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Introduction

Theoretical physics is all about casting our concepts about the real world into rigorous
mathematical form, for better or worse. But theoretical physical doesn’t do that for its
own sake. It does so in order to fully explore the implications of what our concepts about
the real world are. So, to a certain extent, the spirit of theoretical physics can be cast into
the words of Wittgenstein who said: “What we cannot speak about [clearly] we must pass
over in silence.” Indeed, if we have concepts about the real world and it is not possible to
cast them into rigorous mathematical form, that is usually an indicator that some aspects
of these concepts have not been well understood.

Theoretical physical aims at casting these concepts into mathematical language. But
then, mathematics is just that: it is just a language. If we want to extract physical con-
clusions from this formulation, we must interpret the language. That is not the purpose
or task of mathematics, that is the task of physicists. That is where it gets difficult. But
then, again, mathematics is just a language and, going back to Wittgenstein, he said: “The
theorems of mathematics all say the same. Namely, nothing.” What did he mean by that?
Well, obviously, he did not mean that mathematics is useless. He just referred to the fact
that if we have a theorem of the type “A if, and only if, B”, where A and B are propo-
sitions, then obviously B says nothing else that A does, and A says nothing else than B

does. It is a tautology. However, while from the point of view of logic and mathematics it
is a tautology, psychologically, in terms of our understanding of A, it may be very useful to
have a reformulation of A in terms of B.

Thus, with the understanding that mathematics just gives us a language for what we
want to do, the idea of this course is to provide proper language for theoretical physics.
In particular, we will provide the proper mathematical language for classical mechanics,
electromagnetism, quantum mechanics and statistical physics. We are not going to revise
all the mathematics that is needed for these four subjects, but rather we will develop the
mathematics from a higher point of view assuming some prior knowledge of these subjects.
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1 Logic of propositions and predicates

1.1 Propositional logic

Definition. A proposition p is a variable1 that can take the values true (T ) or false (F ),
and no others.

This is what a proposition is from the point of view of propositional logic. In particular,
it is not the task of propositional logic to decide whether a complex statement of the form
“there is extraterrestrial life” is true or not. Propositional logic already deals with the
complete proposition, and it just assumes that is either true or false. It is also not the task
of propositional logic to decide whether a statement of the type “in winter is colder than
outside” is a proposition or not (i.e. if it has the property of being either true or false). In
this particular case, the statement looks rather meaningless.

Definition. A proposition which is always true is called a tautology , while one which is
always false is called a contradiction.

It is possible to build new propositions from given ones using logical operators. The
simplest kind of logical operators are unary operators, which take in one proposition and
return another proposition. There are four unary operators in total, and they differ by the
truth value of the resulting proposition which, in general, depends on the truth value of p.
We can represent them in a table as follows:

p ¬p id(p) >p ⊥p
F T F T F
T F T T F

where ¬ is the negation operator, id is the identity operator, > is the tautology oper-
ator and ⊥ is the contradiction operator. These clearly exhaust all possibilities for unary
operators.

The next step is to consider binary operators, i.e. operators that take in two propo-
sitions and return a new proposition. There are four combinations of the truth values of
two propositions and, since a binary operator assigns one of the two possible truth values
to each of those, we have 16 binary operators in total. The operators ∧, ∨ and Y, called
and, or and exclusive or respectively, should already be familiar to you.

p q p ∧ q p ∨ q p Y q

F F F F F
F T F T T
T F F T T
T T T T F

There is one binary operator, the implication operator ⇒, which is sometimes a little
ill understood, unless you are already very knowledgeable about these things. Its usefulness
comes in conjunction with the equivalence operator ⇔. We have:

1By this we mean a formal expression, with no extra structure assumed.
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p q p⇒ q p⇔ q

F F T T
F T T F
T F F F
T T T T

While the fact that the proposition p⇒ q is true whenever p is false may be surprising
at first, it is just the definition of the implication operator and it is an expression of the
principle “Ex falso quod libet”, that is, from a false assumption anything follows. Of course,
you may be wondering why on earth we would want to define the implication operator in
this way. The answer to this is hidden in the following result.

Theorem 1.1. Let p, q be propositions. Then (p⇒ q)⇔ ((¬q)⇒ (¬p)).

Proof. We simply construct the truth tables for p⇒ q and (¬q)⇒ (¬p).

p q ¬p ¬q p⇒ q (¬q)⇒ (¬p)
F F T T T T
F T T F T T
T F F T F F
T T F F T T

The columns for p⇒ q and (¬q)⇒ (¬p) are identical and hence we are done.

Remark 1.2. We agree on decreasing binding strength in the sequence:

¬ , ∧ , ∨ , ⇒ , ⇔ .

For example, (¬q)⇒ (¬p) may be written unambiguously as ¬q ⇒ ¬p.

Remark 1.3. All higher order operators ♥(p1, . . . , pN ) can be constructed from a single
binary operator defined by:

p q p ↑ q
F F T
F T T
T F T
T T F

This is called the nand operator and, in fact, we have (p ↑ q)⇔ ¬(p ∧ q).

1.2 Predicate logic

Definition. A predicate is (informally) a proposition-valued function of some variable or
variables. In particular, a predicate of two variables is called a relation.
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For example, P (x) is a proposition for each choice of the variable x, and its truth value
depends on x. Similarly, the predicate Q(x, y) is, for any choice of x and y, a proposition
and its truth value depends on x and y.

Just like for propositional logic, it is not the task of predicate logic to examine how
predicates are built from the variables on which they depend. In order to do that, one
would need some further language establishing the rules to combine the variables x and
y into a predicate. Also, you may want to specify from which “set” x and y come from.
Instead, we leave it completely open, and simply consider x and y formal variables, with
no extra conditions imposed.

This may seem a bit weird since from elementary school one is conditioned to always
ask where "x" comes from upon seeing an expression like P (x). However, it is crucial that
we refrain from doing this here, since we want to only later define the notion of set, using
the language of propositional and predicate logic. As with propositions, we can construct
new predicates from given ones by using the operators define in the previous section. For
example, we might have:

Q(x, y, z) :⇔ P (x) ∧R(y, z),

where the symbol :⇔ means “defined as being equivalent to”. More interestingly, we can
construct a new proposition from a given predicate by using quantifiers.

Definition. Let P (x) be a predicate. Then:

∀x : P (x),

is a proposition, which we read as “for all x, P of x (is true)”, and it is defined to be true if
P (x) is true independently of x, false otherwise. The symbol ∀ is called universal quantifier .

Definition. Let P (x) be a predicate. Then we define:

∃x : P (x) :⇔ ¬(∀x : ¬P (x)).

The proposition ∃x : P (x) is read as “there exists (at least one) x such that P of x (is
true)” and the symbol ∃ is called existential quantifier .

The following result is an immediate consequence of these definitions.

Corollary 1.4. Let P (x) be a predicate. Then:

∀x : P (x)⇔ ¬(∃x : ¬P (x)).

Remark 1.5. It is possible to define quantification of predicates of more than one variable.
In order to do so, one proceeds in steps quantifying a predicate of one variable at each step.

Example 1.6. Let P (x, y) be a predicate. Then, for fixed y, P (x, y) is a predicate of one
variable and we define:

Q(y) :⇔ ∀x : P (x, y).

Hence we may have the following:

∃ y : ∀x : P (x, y) :⇔ ∃ y : Q(y).

Other combinations of quantifiers are defined analogously.
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Remark 1.7. The order of quantification matters (if the quantifiers are not all the same).
For a given predicate P (x, y), the propositions:

∃ y : ∀x : P (x, y) and ∀x : ∃ y : P (x, y)

are not necessarily equivalent.

Example 1.8. Consider the proposition expressing the existence of additive inverses in the
real numbers. We have:

∀x : ∃ y : x+ y = 0,

i.e. for each x there exists an inverse y such that x + y = 0. For 1 this is −1, for 2 it is
−2 etc. Consider now the proposition obtained by swapping the quantifiers in the previous
proposition:

∃ y : ∀x : x+ y = 0.

What this proposition is saying is that there exists a real number y such that, no
matter what x is, we have x + y = 0. This is clearly false, since if x + y = 0 for some x
then (x+ 1) + y 6= 0, so the same y cannot work for both x and x+ 1, let alone every x.

Notice that the proposition ∃x : P (x) means “there exists at least one x such that P (x)

is true”. Often in mathematics we prove that “there exists a unique x such that P (x) is
true”. We therefore have the following definition.

Definition. Let P (x) be a predicate. We define the unique existential quantifier ∃! by:

∃!x : P (x) :⇔ (∃x : P (x)) ∧ ∀ y : ∀ z : (P (y) ∧ P (z)⇒ y = z).

This definition clearly separates the existence condition from the uniqueness condition.
An equivalent definition with the advantage of brevity is:

∃!x : P (x) :⇔ (∃x : ∀ y : P (y)⇔ x = y)

1.3 Axiomatic systems and theory of proofs

Definition. An axiomatic system is a finite sequence of propositions a1, a2, . . . , aN , which
are called the axioms of the system.

Definition. A proof of a proposition p within an axiomatic system a1, a2, . . . , aN is a finite
sequence of propositions q1, q2, . . . , qM such that qM = p and for any 1 ≤ j ≤M one of the
following is satisfied:

(A) qj is a proposition from the list of axioms;

(T) qj is a tautology;

(M) ∃ 1 ≤ m,n < j : (qm ∧ qn ⇒ qj) is true.

Remark 1.9. If p can be proven within an axiomatic system a1, a2, . . . , aN , we write:

a1, a2, . . . , aN ` p

and we read “a1, a2, . . . , aN proves p”.
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Remark 1.10. This definition of proof allows to easily recognise a proof. A computer could
easily check that whether or not the conditions (A), (T) and (M) are satisfied by a sequence
of propositions. To actually find a proof of a proposition is a whole different story.

Remark 1.11. Obviously, any tautology that appears in the list of axioms of an axiomatic
system can be removed from the list without impairing the power of the axiomatic system.

An extreme case of an axiomatic system is propositional logic. The axiomatic system for
propositional logic is the empty sequence. This means that all we can prove in propositional
logic are tautologies.

Definition. An axiomatic system a1, a2, . . . , aN is said to be consistent if there exists a
proposition q which cannot be proven from the axioms. In symbols:

∃ q : ¬(a1, a2, . . . , aN ` q).

The idea behind this definition is the following. Consider an axiomatic system which
contains contradicting propositions:

a1, . . . , s, . . . ,¬s, . . . , aN .

Then, given any proposition q, the following is a proof of q within this system:

s,¬s, q.

Indeed, s and ¬s are legitimate steps in the proof since they are axioms. Moreover, s ∧ ¬s
is a contradiction and thus (s∧¬s)⇒ q is a tautology. Therefore, q follows from condition
(M). This shows that any proposition can be proven within a system with contradictory
axioms. In other words, the inability to prove every proposition is a property possessed by
no contradictory system, and hence we define a consistent system as one with this property.

Having come this far, we can now state (and prove) an impressively sounding theorem.

Theorem 1.12. Propositional logic is consistent.

Proof. Suffices to show that there exists a proposition that cannot be proven within propo-
sitional logic. Propositional logic has the empty sequence as axioms. Therefore, only
conditions (T) and (M) are relevant here. The latter allows the insertion of a proposition
qj such that (qm ∧ qn) ⇒ qj is true, where qm and qn are propositions that precede qj in
the proof sequence. However, since (T) only allows the insertion of a tautology anywhere
in the proof sequence, the propositions qm and qn must be tautologies. Consequently, for
(qm ∧ qn)⇒ qj to be true, qj must also be a tautology. Hence, the proof sequence consists
entirely of tautologies and thus only tautologies can be proven.

Now let q be any proposition. Then q ∧ ¬q is a contradiction, hence not a tautology
and thus cannot be proven. Therefore, propositional logic is consistent.

Remark 1.13. While it is perfectly fine and clear how to define consistency, it is perfectly
difficult to prove consistency for a given axiomatic system, propositional logic being a big
exception.
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Theorem 1.14. Any axiomatic system powerful enough to encode elementary arithmetic
is either inconsistent or contains an undecidable proposition, i.e. a proposition that can be
neither proven nor disproven within the system.

An example of an undecidable proposition is the Continuum hypothesis within the
Zermelo-Fraenkel axiomatic system.
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2 Axioms of set theory

2.1 The ∈-relation

Set theory is built on the postulate that there is a fundamental relation (i.e. a predicate of
two variables) denoted ∈ and read as “epsilon”. There will be no definition of what ∈ is, or
of what a set is. Instead, we will have nine axioms concerning ∈ and sets, and it is only in
terms of these nine axioms that ∈ and sets are defined at all. Here is an overview of the
axioms. We will have:

• 2 basic existence axioms, one about the ∈ relation and the other about the existence
of the empty set;

• 4 construction axioms, which establish rules for building new sets from given ones.
They are the pair set axiom, the union set axiom, the replacement axiom and the
power set axiom;

• 2 further existence/construction axioms, these are slightly more advanced and newer
compared to the others;

• 1 axiom of foundation, excluding some constructions as not being sets.

Using the ∈-relation we can immediately define the following relations:

• x /∈ y :⇔ ¬(x ∈ y)

• x ⊆ y :⇔ ∀ a : (a ∈ x⇒ a ∈ y)

• x = y :⇔ (x ⊆ y) ∧ (y ⊆ x)

• x ⊂ y :⇔ (x ⊆ y) ∧ ¬(x = y)

Remark 2.1. A comment about notation. Since ∈ is a predicate of two variables, for
consistency of notation we should write ∈(x, y). However, the notation x ∈ y is much more
common (as well as intuitive) and hence we simply define:

x ∈ y :⇔ ∈(x, y)

and we read “x is in (or belongs to) y” or “x is an element (or a member) of y”. Similar
remarks apply to the other relations /∈, ⊆ and =.

2.2 Zermelo-Fraenkel axioms of set theory

Axiom on the ∈-relation. The expression x ∈ y is a proposition if, and only if, both x
and y are sets. In symbols:

∀x : ∀ y : (x ∈ y) Y ¬(x ∈ y).

We remarked, previously, that it is not the task of predicate logic to inquire about the nature
of the variables on which predicates depend. This first axiom clarifies that the variables on
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which the relation ∈ depend are sets. In other words, if x ∈ y is not a proposition (i.e. it
does not have the property of being either true or false) then x and y are not both sets.

This seems so trivial that, for a long time, people thought that this not much of a
condition. But, in fact, it is. It tells us when something is not a set.

Example 2.2 (Russell’s paradox). Suppose that there is some u which has the following
property:

∀x : (x /∈ x⇔ x ∈ u),

i.e. u contains all the sets that are not elements of themselves, and no others. We wish to
determine whether u is a set or not. In order to do so, consider the expression u ∈ u. If u
is a set then, by the first axiom, u ∈ u is a proposition.

However, we will show that his is not the case. Suppose first that u ∈ u is true. Then
¬(u /∈ u) is true and thus u does not satisfy the condition for being an element of u, and
hence is not an element of u. Thus:

u ∈ u⇒ ¬(u ∈ u)

and this is a contradiction. Therefore, u ∈ u cannot be true. Then, if it is a proposition,
it must be false. However, if u /∈ u, then u satisfies the condition for being a member of u
and thus:

u /∈ u⇒ ¬(u /∈ u)

which is, again, a contradiction. Therefore, u ∈ u does not have the property of being either
true or false (it can be neither) and hence it is not a proposition. Thus, our first axiom
implies that u is not a set, for if it were, then u ∈ u would be a proposition.

Remark 2.3. The fact that u as defined above is not a set means that expressions like:

u ∈ u, x ∈ u, u ∈ x, x /∈ u, etc.

are not propositions and thus, they are not part of axiomatic set theory.

Axiom on the existence of an empty set. There exists a set that contains no
elements. In symbols:

∃ y : ∀x : x /∈ y.

Notice the use of “an” above. In fact, we have all the tools to prove that there is only one
empty set. We do not need this to be an axiom.

Theorem 2.4. There is only one empty set, and we denote it by ∅.

Proof. (Standard textbook style). Suppose that x and x′ are both empty sets. Then y ∈ x
is false as x is the empty set. But then:

(y ∈ x)⇒ (y ∈ x′)

is true, and in particular it is true independently of y. Therefore:

∀ y : (y ∈ x)⇒ (y ∈ x′)
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and hence x ⊆ x′. Conversely, by the same argument, we have:

∀ y : (y ∈ x′)⇒ (y ∈ x)

and thus x′ ⊆ x. Hence (x ⊆ x′) ∧ (x′ ⊆ x) and therefore x = x′.

This is the proof that is found in standard textbooks. However, we gave a definition
of what a proof within the axiomatic system of propositional logic is, and this “proof” does
not satisfy our definition of proof.

In order to give a precise proof, we first have to encode our assumptions into a sequence
of axioms. These consist of the axioms of propositional logic (the empty sequence) plus:

a1 ⇔ ∀ y : y /∈ x
a2 ⇔ ∀ y : y /∈ x′

i.e. x and x′ are both empty sets. We now have to write down a (finite) sequence of
propositions:

q1 ⇔ . . .

q2 ⇔ . . .
...

qM ⇔ x = x′

withM to be determined and such that, for each 1 ≤ j ≤M one of the following is satisfied:

(A) qj ⇔ a1 or qj ⇔ a2;

(T) qj is a tautology;

(M) ∃ 1 ≤ m,n < j : (qm ∧ qn ⇒ qj) is true.

These are the three conditions that a sequence of propositions must satisfy in order to be
a proof.

Proof. (Formal) We begin with a tautology.

q1 ⇔ y /∈ x⇒ ∀ y : (y ∈ x⇒ y ∈ x′) (T)

q2 ⇔ ∀ y : y /∈ x (A) using a1

q3 ⇔ ∀ y : (y ∈ x⇒ y ∈ x′) (M) using q1 and q2

The third step follows since q1 ∧ q2 ⇒ q3 is of the form:

((p⇒ r) ∧ p)⇒ r,

where p ⇔ y /∈ x and r ⇔ ∀ y : (y ∈ x ⇒ y ∈ x′) and it is easily seen to be true by
constructing a truth table. Moreover, by the definition of ⊆, we may rewrite q3 as:

q3 ⇔ x ⊆ x′.
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The next three steps are very similar to the first three:

q4 ⇔ y /∈ x′ ⇒ ∀ y : (y ∈ x′ ⇒ y ∈ x) (T)

q5 ⇔ ∀ y : y /∈ x′ (A) using a2

q6 ⇔ ∀ y : (y ∈ x′ ⇒ y ∈ x) (M) using q4 and q5

where again, q6 may be written as:

q6 ⇔ x′ ⊆ x.

Finally, we have:

q7 ⇔ (x ⊆ x′) ∧ (x′ ⊆ x) (M) using q3 and q6.

This follows since since q3 ∧ q6 ⇒ q7 is of the form p ⇒ p which is obviously a tautology.
Recalling the definition of =, we may rewrite q7 as:

q7 ⇔ x = x′

thereby concluding the proof in seven steps.

Axiom on pair sets. Let x and y be sets. Then there exists a set that contains as its
elements precisely x and y. In symbols:

∀x : ∀ y : ∃m : ∀u : (u ∈ m⇔ (u = x ∨ u = y)).

The set m is called the pair set of x and y and it is denoted by {x, y}.

Remark 2.5. We have chosen {x, y} as the notation for the pair set of x and y, but what
about {y, x}? The fact that the definition of the pair set remains unchanged if we swap x
and y suggests that {x, y} and {y, x} are the same set. Indeed, by definition, we have:

(a ∈ {x, y} ⇒ a ∈ {y, x}) ∧ (a ∈ {y, x} ⇒ a ∈ {x, y})

independently of a, hence ({x, y} ⊆ {y, x}) ∧ ({y, x} ⊆ {x, y}) and thus {x, y} = {y, x}.

The pair set {x, y} is thus an unordered pair. However, using the axiom on pair sets,
it is also possible to define an ordered pair (x, y) such that (x, y) 6= (y, x). The defining
property of an ordered pair is the following:

(x, y) = (a, b)⇔ x = a ∧ y = b.

One candidate which satisfies this property is (x, y) := {x, {x, y}}, which is a set by the
axiom on pair sets.

Remark 2.6. The pair set axiom also guarantees the existence of one-element sets, called
singletons. If x is a set, then we define {x} := {x, x}. Informally, we can say that {x} and
{x, x} express the same amount of information, namely that they contain x.
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Axiom on union sets. Let x be a set. Then there exists a set whose elements are
precisely the elements of the elements of x. In symbols:

∀x : ∃u : ∀ y : (y ∈ u⇔ ∃ s : (y ∈ s ∧ s ∈ x))

The set u is denoted by
⋃
x.

Example 2.7. Let a, b be sets. Then {a} and {b} are sets by the pair set axiom, and hence
x := {{a}, {b}} is a set, again by the pair set axiom. Then the expression:⋃

x = {a, b}

is a set by the union axiom.

Notice that, since a and b are sets, we could have immediately concluded that {a, b}
is a set by the pair set axiom. The union set axiom is really needed to construct sets with
more than 2 elements.

Example 2.8. Let a, b, c be sets. Then {a} and {b, c} are sets by the pair set axiom, and
hence x := {{a}, {b, c}} is a set, again by the pair set axiom. Then the expression:⋃

x =: {a, b, c}

is a set by the union set axiom. This time the union set axiom was really necessary to
establish that {a, b, c} is a set, i.e. in order to be able to use it meaningfully in conjunction
with the ∈-relation.

The previous example easily generalises to a definition.

Definition. Let a1, a2, . . . , aN be sets. We define recursively for all N ≥ 2:

{a1, a2, . . . , aN+1} :=
⋃
{{a1, a2, . . . , aN}, {aN+1}} .

Remark 2.9. The fact that the x that appears in
⋃
x has to be a set is a crucial restriction.

Informally, we can say that it is only possible to take unions of as many sets as would fit
into a set. The “collection” of all the sets that do not contain themselves is not a set or, we
could say, does not fit into a set. Therefore it is not possible to take the union of all the
sets that do not contain themselves. This is very subtle, but also very precise.

Axiom of replacement. Let R be a functional relation and let m be a set. Then the
image of m under R, denoted by imR(m), is again a set.

Of course, we now need to define the new terms that appear in this axiom. Recall that
a relation is simply a predicate of two variables.

Definition. A relation R is said to be functional if:

∀x : ∃! y : R(x, y).

Definition. Let m be a set and let R be a functional relation. The image of m under R
consists of all those y for which there is an x ∈ m such that R(x, y).
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None of the previous axioms imply that the image of a set under a functional relation is
again a set. The assumption that it always is, is made explicit by the axiom of replacement.

Is is very likely that the reader has come across a weaker form of the axiom of replace-
ment, called the principle of restricted comprehension, which says the following.

Proposition 2.10. Let P (x) be a predicate and let m be a set. Then the elements y ∈ m
such that P (y) is true constitute a set, which we denote by:

{y ∈ m | P (y)}.

Remark 2.11. The principle of restricted comprehension is not to be confused with the
“principle” of universal comprehension which states that {y | P (y)} is a set for any predicate
and was shown to be inconsistent by Russell. Observe that the y ∈ m condition makes it
so that {y ∈ m | P (y)} cannot have more elements than m itself.

Remark 2.12. If y is a set, we define the following notation:

∀x ∈ y : P (x) :⇔ ∀x : (x ∈ y ⇒ P (x))

and:
∃x ∈ y : P (x) :⇔ ¬(∀x ∈ y : ¬P (x)).

Pulling the ¬ through, we can also write:

∃x ∈ y : P (x)⇔ ¬(∀x ∈ y : ¬P (x))

⇔ ¬(∀x : (x ∈ y ⇒ ¬P (x)))

⇔ ∃x : ¬(x ∈ y ⇒ ¬P (x)))

⇔ ∃x : (x ∈ y ∧ P (x)),

where we have used the equivalence (p⇒ q)⇔ ¬(p ∧ ¬q).

The principle of restricted comprehension is a consequence of the axiom of replacement.

Proof. We have two cases.

1. If ¬(∃ y ∈ m : P (y)), then we define: {y ∈ m | P (y)} := ∅.

2. If ∃ ŷ ∈ m : P (ŷ), then let R be the functional relation:

R(x, y) := (P (x) ∧ x = y) ∨ (¬P (x) ∧ ŷ = y)

and hence define {y ∈ m | P (y)} := imR(m).

Don’t worry if you don’t see this immediately. You need to stare at the definitions for
a while and then it will become clear.

Remark 2.13. We will rarely invoke the axiom of replacement in full. We will only invoke
the weaker principle of restricted comprehension, with which we are all familiar with.

We can now define the intersection and the relative complement of sets.
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Definition. Let x be a set. Then we define the intersection of x by:⋂
x := {a ∈

⋃
x | ∀ b ∈ x : a ∈ b}.

If a, b ∈ x and
⋂
x = ∅, then a and b are said to be disjoint.

Definition. Let u and m be sets such that u ⊆ m. Then the complement of u relative to
m is defined as:

m \ u := {x ∈ m | x /∈ u}.

These are both sets by the principle of restricted comprehension, which is ultimately due
to axiom of replacement.

Axiom on the existence of power sets. Let m be a set. Then there exists a set,
denoted by P(m), whose elements are precisely the subsets of m. In symbols:

∀x : ∃ y : ∀ a : (a ∈ y ⇔ a ⊆ x).

Historically, in naïve set theory, the principle of universal comprehension was thought
to be needed in order to define the power set of a set. Traditionally, this would have been
(inconsistently) defined as:

P(m) := {y | y ⊆ m}.

To define power sets in this fashion, we would need to know, a priori, from which “bigger”
set the elements of the power set come from. However, this in not possible based only on
the previous axioms and, in fact, there is no other choice but to dedicate an additional
axiom for the existence of power sets.

Example 2.14. Let m = {a, b}. Then P(m) = {∅, {a}, {b}, {a, b}}.

Remark 2.15. If one defines (a, b) := {a, {a, b}}, then the cartesian product x × y of two
sets x and y, which informally is the set of all ordered pairs of elements of x and y, satisfies:

x× y ⊆ P(P(
⋃
{x, y})).

Hence, the existence of x × y as a set follows from the axioms on unions, pair sets, power
sets and the principle of restricted comprehension.

Axiom of infinity. There exists a set that contains the empty set and, together with
every other element y, it also contains the set {y} as an element. In symbols:

∃x : ∅ ∈ x ∧ ∀ y : (y ∈ x⇒ {y} ∈ x).

Let us consider one such set x. Then ∅ ∈ x and hence {∅} ∈ x. Thus, we also have
{{∅}} ∈ x and so on. Therefore:

x = {∅, {∅}, {{∅}}, {{{∅}}}, . . .}.

We can introduce the following notation for the elements of x:

0 := ∅, 1 := {∅}, 2 := {{∅}}, 3 := {{{∅}}}, . . .
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Corollary 2.16. The “set” N := x is a set according to axiomatic set theory.

This would not be then case without the axiom of infinity since it is not possible to
prove that N constitutes a set from the previous axioms.

Remark 2.17. At this point, one might suspect that we would need an extra axiom for the
existence of the real numbers. But, in fact, we can define R := P(N), which is a set by the
axiom on power sets.

Remark 2.18. The version of the axiom of infinity tat we stated is the one that was first
put forward by Zermelo. A more modern formulation is the following. There exists a set
that contains the empty set and, together with every other element y, it also contains the
set y ∪ {y} as an element. Here we used the notation:

x ∪ y :=
⋃
{x, y}.

With this formulation, the natural numbers look like:

N := {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .}

This may appear more complicated than what we had before, but it is much nicer for two
reasons. First, the natural number n is represented by an n-element set rather than a one-
element set. Second, it generalizes much more naturally to the system of transfinite ordinal
numbers where the successor operation s(x) = x∪{x} applies to transfinite ordinals as well
as natural numbers. Moreover, the natural numbers have the same defining property as the
ordinals: they are transitive sets strictly well-ordered by the ∈-relation.

Axiom of choice. Let x be a set whose elements are non-empty and mutually disjoint.
Then there exists a set y which contains exactly one element of each element of x. In
symbols:

∀x : P (x)⇒ ∃ y : ∀ a ∈ x : ∃! b ∈ a : a ∈ y,

where P (x)⇔ (∃ a : a ∈ x) ∧ (∀ a : ∀ b : (a ∈ x ∧ b ∈ x)⇒
⋂
{a, b} = ∅).

Remark 2.19. The axiom of choice is independent of the other 8 axioms, which means
that one could have set theory with or without the axiom of choice. However, standard
mathematics uses the axiom of choice and hence so will we. There is a number of theorems
that can only be proved by using the axiom of choice. Amongst these we have:

• every vector space has a basis;

• there exists a complete system of representatives of an equivalence relation.

Axiom of foundation. Every non-empty set x contains an element y that has none
of its elements in common with x. In symbols:

∀x : (∃ a : a ∈ x)⇒ ∃ y ∈ x :
⋂
{x, y} = ∅.

An immediate consequence of this axiom is that there is no set that contains itself as an
element.

The totality of all these nine axioms are called ZFC set theory, which is a shorthand
for Zermelo-Fraenkel set theory with the axiom of Choice.
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3 Classification of sets

3.1 Maps between sets

A recurrent theme in mathematics is the classification of spaces by means of structure-
preserving maps between them.

A space is usually meant to be some set equipped with some structure, which is usually
some other set. We will define each instance of space precisely when we will need them. In
the case of sets considered themselves as spaces, there is no extra structure beyond the set
and hence, the structure may be taken to be the empty set.

Definition. Let A,B be sets. A map φ : A → B is a relation such that for each a ∈ A
there exists exactly one b ∈ B such that φ(a, b).

The standard notation for a map is:

φ : A→ B

a 7→ φ(a)

which is technically an abuse of notation since φ, being a relation of two variables, should
have two arguments and produce a truth value. However, once we agree that for each a ∈ A
there exists exactly one b ∈ B such that φ(a, b) is true, then for each a we can define φ(a)

to be precisely that unique b. It is sometimes useful to keep in mind that φ is actually a
relation.

Example 3.1. Let M be a set. The simplest example of a map is the identity map on M :

idM : M →M

m 7→ m.

The following is standard terminology for a map φ : A→ B:

• the set A is called the domain of φ;

• the set B is called the target of φ;

• the set φ(A) ≡ imφ(A) := {φ(a) | a ∈ A} is called the image of A under φ.

Definition. A map φ : A→ B is said to be:

• injective if ∀ a1, a2 ∈ A : φ(a1) = φ(a2)⇒ a1 = a2;

• surjective if imφ(A) = B;

• bijective if it is both injective and surjective.

Definition. Two sets A and B are called (set-theoretic) isomorphic if there exists a bijection
φ : A→ B. In this case, we write A ∼=set B.

Remark 3.2. If there is any bijection A→ B then generally there are many.
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Bijections are the “structure-preserving” maps for sets. Intuitively, they pair up the
elements of A and B and a bijection between A and B exists only if A and B have the same
“size”. This is clear for finite sets, but it can also be extended to infinite sets.

Definition (Classification of sets). A set A is:

• infinite if there exists a proper subset B ⊂ A such that B ∼=set A. In particular, if A
is infinite, we further define A to be:

∗ countably infinite if A ∼=set N;

∗ uncountably infinite otherwise.

• finite if it is not infinite. In this case, we have A ∼=set {1, 2, . . . , N} for some N ∈ N
and we say that the cardinality of A, denoted by |A|, is N .

Given two maps φ : A → B and ψ : B → C, we can construct a third map, called the
composition of φ and ψ, denoted by ψ ◦ φ (read “psi after phi”), defined by:

ψ ◦ φ : A→ C

a 7→ ψ(φ(a)).

This is often represented by drawing the following diagram

B

A C

ψφ

ψ◦φ

and by saying that “the diagram commutes” (although sometimes this is assumed even if
it is not explicitly stated). What this means is that every path in the diagram gives the
same result. This might seem notational overkill at this point, but later we will encounter
situations where we will have many maps, going from many places to many other places
and these diagrams greatly simplify the exposition.

Proposition 3.3. Composition of maps is associative.

Proof. Indeed, let φ : A→ B, ψ : B → C and ξ : C → D be maps. Then we have:

ξ ◦ (ψ ◦ φ) : A→ D

a 7→ ξ(ψ(φ(a)))

and:

(ξ ◦ ψ) ◦ φ : A→ D

a 7→ ξ(ψ(φ(a))).

Thus ξ ◦ (ψ ◦ φ) = (ξ ◦ ψ) ◦ φ.
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The operation of composition is necessary in order to defined inverses of maps.

Definition. Let φ : A→ B be a bijection. Then the inverse of φ, denoted φ−1, is defined
(uniquely) by:

φ−1 ◦ φ = idA

φ ◦ φ−1 = idB .

Equivalently, we require the following diagram to commute:

A BidA

φ

idB

φ−1

The inverse map is only defined for bijections. However, the following notion, which we will
often meet in topology, is defined for any map.

Definition. Let φ : A→ B be a map and let V ⊆ B. Then we define the set:

preimφ(V ) := {a ∈ A | φ(a) ∈ V }

called the pre-image of V under φ.

Proposition 3.4. Let φ : A → B be a map, let U, V ⊆ B and C = {Cj | j ∈ J} ⊆ P(B).
Then:

i) preimφ(∅) = ∅ and preimφ(B) = A;

ii) preimφ(U \ V ) = preimφ(U) \ preimφ(V );

iii) preimφ(
⋃
C) =

⋃
j∈J preimφ(Cj) and preimφ(

⋂
C) =

⋂
j∈J preimφ(Cj).

Proof. i) By definition, we have:

preimφ(B) = {a ∈ A : φ(a) ∈ B} = A

and:
preimφ(∅) = {a ∈ A : φ(a) ∈ ∅} = ∅.

ii) We have:

a ∈ preimφ(U \ V )⇔ φ(a) ∈ U \ V
⇔ φ(a) ∈ U ∧ φ(a) /∈ V
⇔ a ∈ preimφ(U) ∧ a /∈ preimφ(V )

⇔ a ∈ preimφ(U) \ preimφ(V )

iii) We have:

a ∈ preimφ(
⋃
C)⇔ φ(a) ∈

⋃
C

⇔
∨
j∈J(φ(a) ∈ Cj)

⇔
∨
j∈J(a ∈ preimφ(Cj))

⇔ a ∈
⋃
j∈J preimφ(Cj)

Similarly, we get preimφ(
⋂
C) =

⋂
j∈J preimφ(Cj).
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3.2 Equivalence relations

Definition. Let M be a set and let ∼ be a relation such that the following conditions are
satisfied:

i) reflexivity: ∀m ∈M : m ∼ m;

ii) symmetry: ∀m,n ∈M : m ∼ n⇔ n ∼ n;

iii) transitivity: ∀m,n, p ∈M : (m ∼ n ∧ n ∼ p)⇒ m ∼ p.

Then ∼ is called an equivalence relation on M .

Example 3.5. Consider the following wordy examples.

a) p ∼ q :⇔ p is of the same opinion as q. This relation is reflexive, symmetric and
transitive. Hence, it is an equivalence relation.

b) p ∼ q :⇔ p is a sibling of q. This relation is symmetric and transitive but not reflexive
and hence, it is not an equivalence relation.

c) p ∼ q :⇔ p is taller q. This relation is transitive, but neither reflexive nor symmetric
and hence, it is not an equivalence relation.

d) p ∼ q :⇔ p is in love with q. This relation is generally not reflexive. People don’t like
themselves very much. It is certainly not normally symmetric, which is the basis of
much drama in literature. It is also not transitive, except in some French films.

Definition. Let ∼ be an equivalence relation on the set M . Then, for any m ∈ M , we
define the set:

[m] := {n ∈M | m ∼ n}

called the equivalence class of m. Note that the condition m ∼ n is equivalent to n ∼ m

since ∼ is symmetric.

The following are two key properties of equivalence classes.

Proposition 3.6. Let ∼ be an equivalence relation on M . Then:

i) a ∈ [m]⇒ [a] = [m];

ii) either [m] = [n] or [m] ∩ [n] = ∅.

Proof. i) Since a ∈ [m], we have a ∼ m. Let x ∈ [a]. Then x ∼ a and hence x ∼ m by
transitivity. Therefore x ∈ [m] and hence [a] ⊆ [m]. Similarly, we have [m] ⊆ [a] and
hence [a] = [m].

ii) Suppose that [m] ∩ [n] 6= ∅. That is:

∃ z : z ∈ [m] ∧ z ∈ [n].

Thus z ∼ m and z ∼ n and hence, by symmetry and transitivity, m ∼ n. This implies
that m ∈ [n] and hence that [m] = [n].
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Definition. Let ∼ be an equivalence relation on M . Then we define the quotient set of M
by ∼ as:

M/∼ := {[m] | m ∈M}.

This is indeed a set since [m] ⊆ P(M) and hence we can write more precisely:

M/∼ := {[m] ∈ P(M) | m ∈M}.

Then clearly M/∼ is a set by the power set axiom and the principle of restricted compre-
hension.

Remark 3.7. Due to the axiom of choice, there exists a complete system of representatives
for ∼, i.e. a set R such that R ∼=set M/∼.
Remark 3.8. Care must be taken when defining maps whose domain is a quotient set if one
uses representatives to define the map. In order for the map to be well-defined one needs
to show that the map is independent of the choice of representatives.

Example 3.9. Let M = Z and define ∼ by:

m ∼ n :⇔ n−m ∈ 2Z.

It is easy to check that ∼ is indeed an equivalence relation. Moreover, we have:

[0] = [2] = [4] = · · · = [−2] = [−4] = · · ·

and:
[1] = [3] = [5] = · · · = [−1] = [−3] = · · ·

Thus we have: Z/∼ = {[0], [1]}. We wish to define an addition ⊕ on Z/∼ by inheriting
the usual addition on Z. As a tentative definition we could have:

⊕ : Z/∼ × Z/∼ → Z/∼

being given by:
[a]⊕ [b] := [a+ b].

However, we need to check that our definition does not depend on the choice of class
representatives, i.e. if [a] = [a′] and [b] = [b′], then we should have:

[a]⊕ [b] = [a′]⊕ [b′].

Indeed, [a] = [a′] and [b] = [b′] means a − a′ ∈ 2Z and b − b′ ∈ 2Z, i.e. a − a′ = 2m and
b− b′ = 2n for some m,n ∈ Z. We thus have:

[a′ + b′] = [a− 2m+ b− 2n]

= [(a+ b)− 2(m+ n)]

= [a+ b],

where the last equality follows since:

(a+ b)− 2(m+ n)− (a+ b) = −2(m+ n) ∈ 2Z.

Therefore [a′]⊕ [b′] = [a]⊕ [b] and hence the operation ⊕ is well-defined.
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Example 3.10. As a counterexample, with the same set-up as in the previous example, let
us define an operation ? by:

[a] ? [b] :=
a

b
.

This is easily seen to be ill-defined since [1] = [3] and [2] = [4] but:

[1] ? [2] =
1

2
6= 3

4
= [3] ? [4].

3.3 Construction of N, Z, Q and R

Recall that, invoking the axiom of infinity, we defined:

N := {0, 1, 2, 3, . . .},

where:
0 := ∅, 1 := {∅}, 2 := {{∅}}, 3 := {{{∅}}}, . . .

We would now like to define an addition operation on N by using the axioms of set theory.
We will need some preliminary definitions.

Definition. The successor map S on N is defined by:

S : N→ N
n 7→ {n}.

Example 3.11. Consider S(2). Since 2 := {{∅}}, we have S(2) = {{{∅}}} =: 3. Therefore,
we have S(2) = 3 as we would have expected.

To make progress, we also need to define the predecessor map, which is only defined
on the set N∗ := N \ {∅}.

Definition. The predecessor map P on N∗ is defined by:

P : N∗ → N
n 7→ m such that m ∈ n.

Example 3.12. We have P (2) = P ({{∅}}) = {∅} = 1.

Definition. Let n ∈ N. The n-th power of S, denoted Sn, is defined recursively by:

Sn := S ◦ SP (n) if n ∈ N∗

S0 := idN .

We are now ready to define addition.

Definition. The addition operation on N is defined as a map:

+: N× N→ N
(m,n) 7→ m+ n := Sn(m).
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Example 3.13. We have:
2 + 1 = S1(2) = S(2) = 3

and:
1 + 2 = S2(1) = S(S1(1)) = S(S(1)) = S(2) = 3.

Using this definition, it is possible to show that + is commutative and associative. The
neutral element of + is 0 since:

m+ 0 = S0(m) = idN(m) = m

and:
0 +m = Sm(0) = SP (m)(1) = SP (P (m))(2) = · · · = S0(m) = m.

Clearly, there exist no inverses for + in N, i.e. given m ∈ N (non-zero), there exist no n ∈ N
such that m+ n = 0. This motivates the extension of the natural numbers to the integers.
In order to rigorously define Z, we need to define the following relation on N× N.

Definition. Let ∼ be the relation on N× N defined by:

(m,n) ∼ (p, q) :⇔ m+ q = p+ n.

It is easy to check that this is an equivalence relation as:

i) (m,n) ∼ (m,n) since m+ n = m+ n;

ii) (m,n) ∼ (p, q)⇒ (p, q) ∼ (m,n) since m+ q = p+ n⇔ p+ n = m+ q;

iii) ((m,n) ∼ (p, q) ∧ (p, q) ∼ (r, s))⇒ (m,n) ∼ (r, s) since we have:

m+ q = p+ n ∧ p+ s = r + q,

hence m+ q + p+ s = p+ n+ r + q, and thus m+ s = r + n.

Definition. We define the set of integers by:

Z := (N× N)/∼ .

The intuition behind this definition is that the pair (m,n) stands for “m−n”. In other
words, we represent each integer by a pair of natural numbers whose (yet to be defined)
difference is precisely that integer. There are, of course, many ways to represent the same
integer with a pair of natural numbers in this way. For instance, the integer −1 could be
represented by (1, 2), (2, 3), (112, 113), . . .

Notice however that (1, 2) ∼ (2, 3), (1, 2) ∼ (112, 113), etc. and indeed, taking the
quotient by ∼ takes care of this “redundancy”. Notice also that this definition relies entirely
on previously defined entities.
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Remark 3.14. In a first introduction to set theory it is not unlikely to find the claim that the
natural numbers are part of the integers, i.e. N ⊆ Z. However, according to our definition,
this is obviously nonsense since N and Z := (N×N)/∼ contain entirely different elements.
What is true is that N can be embedded into Z, i.e. there exists an inclusion map ι, given
by:

ι : N ↪→ Z
n 7→ [(n, 0)]

and it is in this sense that N is included in Z.

Definition. Let n := [(n, 0)] ∈ Z. Then we define the inverse of n to be −n := [(0, n)].

We would now like to inherit the + operation from N.

Definition. We define the addition of integers +Z : Z× Z→ Z by:

[(m,n)] +Z [(p, q)] := [(m+ p, n+ q)].

Since we used representatives to define +Z, we would need to check that +Z is well-
defined. It is an easy exercise.

Example 3.15. 2 +Z (−3) := [(2, 0)] +Z [(0, 3)] = [(2, 3)] = [(0, 1)] =: −1. Hallelujah!

In a similar fashion, we define the set of rational numbers by:

Q := (Z× Z∗)/∼,

where Z∗ := Z \ {0} and ∼ is a relation on Z× Z∗ given by:

(p, q) ∼ (r, s) :⇔ ps = qr,

assuming that a multiplication operation on the integers has already been defined.

Example 3.16. We have (2, 3) ∼ (4, 6) since 2× 6 = 12 = 3× 4.

Similarly to what we did for the integers, here we are representing each rational number
by the collection of pairs of integers (the second one in each pair being non-zero) such that
their (yet to be defined) ratio is precisely that rational number. Thus, for example, we
have:

2

3
:= [(2, 3)] = [(4, 6)] = . . .

We also have the canonical embedding of Z into Q:

ι : Z ↪→ Q
p 7→ [(p, 1)]

Definition. We define the addition of rational numbers +Q : Q×Q→ Q by:

[(p, q)] +Q [(r, s)] := [(ps+ rq, qs)]
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and multiplication of rational numbers by:

[(p, q)] ·Q [(r, s)] := [(pr, qs)],

where the operations of addition and multiplication that appear on the right hand sides are
the ones defined on Z. It is again necessary (but easy) to check that these operations are
both well-defined.

There are many ways to construct the reals from the rationals. One is to define a set
A of almost homomorphisms on Z and hence define:

R := A /∼,

where ∼ is a “suitable” equivalence relation on A .
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4 Topological spaces: construction and purpose

4.1 Topological spaces

We will now discuss topological spaces based on our previous development of set theory.
As we will see, a topology on a set provides the weakest structure in order to define the
two very important notions of convergence of sequences to points in a set, and of continuity
of maps between two sets. The definition of topology on a set is, at first sight, rather
abstract. But on the upside it is also extremely simple. This definition is the result of a
historical development, it is the simplest definition of topology that mathematician found
to be useful.

Definition. Let M be a set. A topology on M is a set O ⊆ P(M) such that:

i) ∅ ∈ O and M ∈ O;

ii) {U, V } ⊆ O ⇒
⋂
{U, V } ∈ O;

iii) C ⊆ O ⇒
⋃
C ∈ O.

The pair (M,O) is called a topological space. If we write “let M be a topological space”
then some topology O on M is assumed.

Remark 4.1. Unless |M | = 1, there are (usually many) different topologies O that one can
choose on the set M .

|M | Number of
topologies

1 1
2 4
3 29
4 355
5 6,942
6 209,527
7 9,535,241

Example 4.2. Let M = {a, b, c}. Then O = {∅, {a}, {b}, {a, b}, {a, b, c}} is a topology on
M since:

i) ∅ ∈ O and M ∈ O;

ii) Clearly, for any S ∈ O,
⋂
{∅, S} = ∅ ∈ O and

⋂
{S,M} = S ∈ O. Moreover,

{a} ∩ {b} = ∅ ∈ O, {a} ∩ {a, b} = {a} ∈ O, and {b} ∩ {a, b} = {b} ∈ O;

iii) Let C ⊆ O. If M ∈ C, then
⋃
C = M ∈ O. If {a, b} ∈ C (or {a}, {b} ∈ C) but

M /∈ C, then
⋃
C = {a, b} ∈ O. If either {a} ∈ C or {b} ∈ C, but {a, b} /∈ C and

M /∈ C, then
⋃
C = {a} ∈ O or

⋃
C = {b} ∈ O, respectively. Finally, if none of the

above hold, then
⋃
C = ∅ ∈ O.
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Example 4.3. Let M be a set. Then O = {∅,M} is a topology on M . Indeed, we have:

i) ∅ ∈ O and M ∈ O;

ii)
⋂
{∅,∅} = ∅ ∈ O,

⋂
{∅,M} = ∅ ∈ O, and

⋂
{M,M} = M ∈ O;

iii) If M ∈ C, then
⋃
C = M ∈ O, otherwise

⋃
C = ∅ ∈ O.

This is called the chaotic topology and can be defined on any set.

Example 4.4. Let M be a set. Then O = P(M) is a topology on M . Indeed, we have:

i) ∅ ∈ P(M) and M ∈ P(M);

ii) If U, V ∈ P(M), then
⋂
{U, V } ⊆M and hence

⋂
{U, V } ∈ P(M);

iii) If C ⊆ P(M), then
⋃
C ⊆M , and hence

⋃
C ∈ P(M).

This is called the discrete topology and can be defined on any set.

We now give some common terminology regarding topologies.

Definition. Let O1 and O2 be two topologies on a set M . If O1 ⊂ O2, then we say that
O1 is a coarser (or weaker) topology than O2. Equivalently, we say that O2 is a finer (or
stronger) topology than O1.

Clearly, the chaotic topology is the coarsest topology on any given set, while the discrete
topology is the finest.

Definition. Let (M,O) be a topological space. A subset S of M is said to be open (with
respect to O) if S ∈ O and closed (with respect to O) if M \ S ∈ O.

Notice that the notions of open and closed sets, as defined, are not mutually exclusive.
A set could be both or neither, or one and not the other.

Example 4.5. Let (M,O) be a topological space. Then ∅ is open since ∅ ∈ O. However,
∅ is also closed since M \∅ = M ∈ O. Similarly for M .

Example 4.6. Let M = {a, b, c} and let O = {∅, {a}, {a, b}, {a, b, c}}. Then {a} is open
but not closed, {b, c} is closed but not open, and {b} is neither open nor closed.

We will now define what is called the standard topology on Rd, where:

Rd := R× R× · · · × R︸ ︷︷ ︸
d times

.

We will need the following auxiliary definition.

Definition. For any x ∈ Rd and any r ∈ R+ := {s ∈ R | s > 0}, we define the open ball of
radius r around the point x:

Br(x) :=
{
y ∈ Rd |

√∑d
i=1(yi − xi)2 < r

}
,

where x := (x1, x2, . . . , xd) and y := (y1, y2, . . . , yd), with xi, yi ∈ R.
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Remark 4.7. The quantity
√∑d

i=1(yi − xi)2 is usually denoted by ‖y− x‖2, where ‖ · ‖2 is
the 2-norm on Rd. However, the definition of a norm on a set requires the set to be equipped
with a vector space structure (which we haven’t defined yet), while our construction does
not. Moreover, our construction can be proven to be independent of the particular norm
used to define it, i.e. any other norm will induce the same topological structure.

Definition. The standard topology on Rd, denoted Ostd, is defined by:

U ∈ Ostd :⇔ ∀ p ∈ U : ∃ r ∈ R+ : Br(p) ⊆ U.

Of course, simply calling something a topology, does not automatically make it into a
topology. We have to prove that Ostd as we defined it, does constitute a topology.

Proposition 4.8. The pair (Rd,Ostd) is a topological space.

Proof. i) First, we need to check whether ∅ ∈ Ostd, i.e. whether:

∀ p ∈ ∅ : ∃ r ∈ R+ : Br(p) ⊆ ∅

is true. This proposition is of the form ∀ p ∈ ∅ : Q(p), which was defined as being
equivalent to:

∀ p : p ∈ ∅⇒ Q(p).

However, since p ∈ ∅ is false, the implication is true independent of p. Hence the
initial proposition is true and thus ∅ ∈ Ostd.

Second, by definition, we have Br(x) ⊆ Rd independent of x and r, hence:

∀ p ∈ Rd : ∃ r ∈ R+ : Br(p) ⊆ Rd

is true and thus Rd ∈ Ostd.

ii) Let U, V ∈ Ostd and let p ∈ U ∩ V . Then:

p ∈ U ∩ V :⇔ p ∈ U ∧ p ∈ V

and hence, since U, V ∈ Ostd, we have:

∃ r1 ∈ R+ : Br1(p) ⊆ U ∧ ∃ r2 ∈ R+ : Br2(p) ⊆ V.

Let r = min{r1, r2}. Then:

Br(p) ⊆ Br1(p) ⊆ U ∧ Br(p) ⊆ Br2(p) ⊆ V

and hence Br(p) ⊆ U ∩ V . Therefore U ∩ V ∈ Ostd.

iii) Let C ⊆ Ostd and let p ∈
⋃
C. Then, p ∈ U for some U ∈ C and, since U ∈ Ostd, we

have:
∃ r ∈ R+ : Br(p) ⊆ U ⊆

⋃
C.

Therefore, Ostd is indeed a topology on Rd.
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4.2 Construction of new topologies from given ones

Proposition 4.9. Let (M,O) be a topological space and let N ⊂M . Then:

O|N := {U ∩N | U ∈ O} ⊆ P(N)

is a topology on N called the induced (subset) topology.

Proof. i) Since ∅ ∈ O and ∅ = ∅ ∩ N , we have ∅ ∈ O|N . Similarly, we have M ∈ O
and N = M ∩N , and thus N ∈ O|N .

ii) Let U, V ∈ O|N . Then, by definition:

∃S ∈ O : U = S ∩N ∧ ∃T ∈ O : V = T ∩N.

We thus have:
U ∩ V = (S ∩N) ∩ (T ∩N) = (S ∩ T ) ∩N.

Since S, T ∈ O and O is a topology, we have S ∩ T ∈ O and hence U ∩ V ∈ O|N .

iii) Let C := {Sα | α ∈ A} ⊆ O|N . By definition, we have:

∀α ∈ A : ∃Uα ∈ O : Sα = Uα ∩N.

Then, using the notation:⋃
α∈A

Sα :=
⋃
C =

⋃
{Sα | α ∈ A}

and De Morgan’s law, we have:⋃
α∈A

Sα =
⋃
α∈A

(Uα ∩N) =

( ⋃
α∈A

Uα

)
∩N.

Since O is a topology, we have
⋃
α∈A Uα ∈ O and hence

⋃
C ∈ O|N .

Thus O|N is a topology on N .

Example 4.10. Consider (R,Ostd) and let:

N = [−1, 1] := {x ∈ R | −1 ≤ x ≤ 1}.

Then (N,Ostd|N ) is a topological space. The set (0, 1] is clearly not open in (R,Ostd) since
(0, 1] /∈ Ostd. However, we have:

(0, 1] = (0, 2) ∩ [−1, 1]

where (0, 2) ∈ Ostd and hence (0, 1] ∈ Ostd|N , i.e. the set (0, 1] is open in (N,Ostd|N ).

Definition. Let (M,O) be a topological space and let ∼ be an equivalence relation on M .
Then, the quotient set:

M/∼ = {[m] ∈ P(M) | m ∈M}

can be equipped with the quotient topology OM/∼ defined by:

OM/∼ := {U ∈M/∼ |
⋃
U =

⋃
[a]∈U

[a] ∈ O}.
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An equivalent definition of the quotient topology is as follows. Let q : M → M/∼ be
the map:

q : M →M/∼
m 7→ [m]

Then we have:
OM/∼ := {U ∈M/∼ | preimq(U) ∈ O}.

Example 4.11. The circle (or 1-sphere) is defined as the set S1 := {(x, y) ∈ R2 | x2+y2 = 1}
equipped with the subset topology inherited from R2. The open sets of the circle are (unions
of) open arcs, i.e. arcs without the endpoints. Individual points on the circle are clearly
not open since there is no open set of R2 whose intersection with the circle is a single point.
However, an individual point on the circle is a closed set since its complement is an open
arc.

An alternative definition of the circle is the following. Let ∼ be the equivalence relation
on R defined by:

x ∼ y :⇔ ∃n ∈ Z : x = y + 2πn.

Then the circle can be defined as the set S1 := R/∼ equipped with the quotient topology.

Definition. Let (A,OA) and (B,OB) be topological spaces. Then the set OA×B defined
implicitly by:

U ∈ OA×B :⇔ ∀ p ∈ U : ∃ (S, T ) ∈ OA ×OB : S × T ⊆ U

is a topology on A×B called the product topology .

Remark 4.12. This definition can easily be extended to n-fold cartesian products:

U ∈ OA1×···×An :⇔ ∀ p ∈ U : ∃ (S1, . . . , Sn) ∈ OA1 × · · · × OAn : S1 × · · · × Sn ⊆ U.

Remark 4.13. Using the previous definition, one can check that the standard topology on
Rd satisfies:

Ostd = OR×R×···×R︸ ︷︷ ︸
d times

.

Therefore, a more minimalistic definition of the standard topology on Rd would consist in
defining Ostd only for R (i.e. d = 1) and then extending it to Rd by the product topology.

4.3 Convergence

Definition. Let M be a set. A sequence (of points) in M is a function q : N→M .

Definition. Let (M,O) be a topological space. A sequence q in M is said to converge
against a limit point a ∈M if:

∀U ∈ O : a ∈ U ⇒ ∃N ∈ N : ∀n > N : q(n) ∈ U.
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Remark 4.14. An open set U of M such that a ∈ U is called an open neighbourhood of a.
If we denote this by U(a), then the previous definition of convergence can be rewritten as:

∀U(a) : ∃N ∈ N : ∀n > N : q(n) ∈ U.

Example 4.15. Consider the topological space (M, {∅,M}). Then every sequence in M

converges to every point in M . Indeed, let q be any sequence and let a ∈ M . Then, q
converges against a if:

∀U ∈ {∅,M} : a ∈ U ⇒ ∃N ∈ N : ∀n > N : q(n) ∈ U.

This proposition is vacuously true for U = ∅, while for U = M we have q(n) ∈ M

independent of n. Therefore, the (arbitrary) sequence q converges to the (arbitrary) point
a ∈M .

Example 4.16. Consider the topological space (M,P(M)). Then only definitely constant
sequences converge, where a sequence is definitely constant with value c ∈M if:

∃N ∈ N : ∀n > N : q(n) = c.

This is immediate from the definition of convergence since in the discrete topology all
singleton sets (i.e. one-element sets) are open.

Example 4.17. Consider the topological space (Rd,Ostd). Then, a sequence q : N → Rd

converges against a ∈ Rd if:

∀ ε > 0 : ∃N ∈ N : ∀n > N : ‖q(n)− a‖2 < ε.

Example 4.18. Let M = R and let q = 1− 1
n+1 . Then, since q is not definitely constant, it

is not convergent in (R,P(R)), but it is convergent in (R,Ostd).

4.4 Continuity

Definition. Let (M,OM ) and (N,ON ) be topological spaces and let φ : M → N be a map.
Then, φ is said to be continuous (with respect to the topologies OM and ON ) if:

∀S ∈ ON , preimφ(S) ∈ OM ,

where preimφ(S) := {m ∈M : φ(m) ∈ S} is the pre-image of S under the map φ.

Informally, one says that φ is continuous if the pre-images of open sets are open.

Example 4.19. IfM is equipped with the discrete topology, or N with the chaotic topology,
then any map φ : M → N is continuous. Indeed, let S ∈ ON . If OM = P(M) (and ON is
any topology), then we have:

preimφ(S) = {m ∈M : φ(m) ∈ S} ⊆M ∈ P(M) = OM .

If instead ON = {∅, N} (and OM is any topology), then either S = ∅ or S = N and thus,
we have:

preimφ(∅) = ∅ ∈ OM and preimφ(N) = M ∈ OM .
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Example 4.20. Let M = {a, b, c} and N = {1, 2, 3}, with respective topologies:

OM = {∅, {b}, {a, c}, {a, b, c}} and ON = {∅, {2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}},

and let φ : M → N by defined by:

φ(a) = 2, φ(b) = 1, φ(c) = 2.

Then φ is continuous. Indeed, we have:

preimφ(∅) = ∅, preimφ({2}) = {a, c}, preimφ({3}) = ∅,
preimφ({1, 3}) = {b}, preimφ({2, 3}) = {a, c}, preimφ({1, 2, 3}) = {a, b, c},

and hence preimφ(S) ∈ OM for all S ∈ ON .

Example 4.21. Consider (Rd,Ostd) and (Rs,Ostd). Then φ : Rd → Rs is continuous with
respect to the standard topologies if it satisfies the usual ε-δ definition of continuity:

∀ a ∈ Rd : ∀ ε > 0 : ∃ δ > 0 : ∀ 0 < ‖x− a‖2 < δ : ‖φ(x)− φ(a)‖2 < ε.

Definition. Let (M,OM ) and (N,ON ) be topological spaces. A bijection φ : M → N is
called a homeomorphism if both φ : M → N and φ−1 : N →M are continuous.

Remark 4.22. Homeo(morphism)s are the structure-preserving maps in topology.

If there exists a homeomorphism φ between (M,OM ) and (N,ON ),

M N

φ

φ−1

then φ provides a one-to-one pairing of the open sets of M with the open sets of N .

Definition. If there exists a homeomorphism between two topological spaces (M,OM ) and
(N,ON ), we say that the two spaces are homeomorphic or topologically isomorphic and we
write (M,OM ) ∼=top (N,ON ).

Clearly, if (M,OM ) ∼=top (N,ON ), then M ∼=set N .
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5 Topological spaces: some heavily used invariants

5.1 Separation properties

Definition. A topological space (M,O) is said to be T1 if for any two distinct points
p, q ∈M , p 6= q:

∃U(p) ∈ O : q /∈ U(p).

Definition. A topological space (M,O) is said to be T2 or Hausdorff if, for any two
distinct points, there exist non-intersecting open neighbourhoods of these two points:

∀ p, q ∈M : p 6= q ⇒ ∃U(p), V (q) ∈ O : U(p) ∩ V (q) = ∅.

Example 5.1. The topological space (Rd,Ostd) is T2 and hence also T1.

Example 5.2. The Zariski topology on an algebraic variety is T1 but not T2.

Example 5.3. The topological space (M, {∅,M}) does not have the T1 property since for
any p ∈M , the only open neighbourhood of p isM and for any other q 6= p we have q ∈M .
Moreover, since this space is not T1, it cannot be T2 either.

Remark 5.4. There are many other “T” properties, including a T21⁄2 property which differs
from T2 in that the neighbourhoods are closed.

5.2 Compactness and paracompactness

Definition. Let (M,O) be a topological space. A set C ⊆ P(M) is called a cover (of M)
if: ⋃

C = M.

Additionally, it is said to an open cover if C ⊆ O.

Definition. Let C be a cover. Then any subset C̃ ⊆ C such that C̃ is still a cover, is called
a subcover. Additionally, it is said to be a finite subcover if it is finite as a set.

Definition. A topological space (M,O) is said to be compact if every open cover has a
finite subcover.

Definition. Let (M,O) be a topological space. A subset N ⊆ M is called compact if the
topological space (N,O|N ) is compact.

Determining whether a set is compact or not is not an easy task. Fortunately though,
for Rd equipped with the standard topology Ostd, the following theorem greatly simplifies
matters.

Theorem 5.5 (Heine-Borel). Let Rd be equipped with the standard topology Ostd. Then, a
subset of Rd is compact if, and only if, it is closed and bounded.

A subset S of Rd is said to be bounded if:

∃ r ∈ R+ : S ⊆ Br(0).
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Remark 5.6. It is also possible to generalize this result to arbitrary metric spaces. A metric
space is a pair (M,d) where M is a set and d : M ×M → R is a map such that for any
x, y, z ∈M the following conditions hold:

i) d(x, y) ≥ 0;

ii) d(x, y) = 0⇔ x = y;

iii) d(x, y) = d(y, x);

iv) d(x, y) ≤ d(x, z) + d(y, z).

A metric structure on a set M induces a topology Od on M by:

U ∈ Od :⇔ ∀ p ∈ U : ∃ r ∈ R+ : Br(p) ⊆ U,

where the open ball in a metric space is defined as:

Br(p) := {x ∈M | d(p, x) < r}.

In this setting, one can prove that a subset S ⊆M of a metric space (M,d) is compact if,
and only if, it is complete and totally bounded.

Example 5.7. The interval [0, 1] is compact in (R,Ostd). The one-element set containing
(−1, 2) is a cover of [0, 1], but it is also a finite subcover and hence [0, 1] is compact from
the definition. Alternatively, [0, 1] is clearly closed and bounded, and hence it is compact
by the Heine-Borel theorem.

Example 5.8. The set R is not compact in (R,Ostd). To prove this, it suffices to show that
there exists a cover of R that does not have a finite subcover. To this end, let:

C := {(n, n+ 1) | n ∈ Z} ∪ {(n+ 1
2 , n+ 3

2) | n ∈ Z}.

This corresponds to the following picture.

−1 −1/2 0 1/2 1 R

C
{

It is clear that removing even one element from C will cause C to fail to be an open
cover of R. Therefore, there is no finite subcover of C and hence, R is not compact.

Theorem 5.9. Let (M,OM ) and (N,ON ) be compact topological spaces. Then (M ×
N,OM×N ) is a compact topological space.

The above theorem easily extends to finite cartesian products.

Definition. Let (M,O) be a topological space and let C be a cover. A refinement of C is
a cover R such that:

∀U ∈ R : ∃V ∈ C : U ⊆ V.
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Any subcover of a cover is a refinement of that cover, but the converse is not true in
general. A refinement R is said to be:

• open if R ⊆ O;

• locally finite if for any p ∈M there exists a neighbourhood U(p) such that the set:

{U ∈ R | U ∩ U(p) 6= ∅}

is finite as a  set.

Compactness is a very strong property. Hence often times it does not hold, but a 
weaker and still useful property, called paracompactness, may still hold.

Definition. A topological space (M, O) is said to be paracompact if every open cover has 
an open refinement that is locally finite.  =>定义参考下一页

Corollary 5.10. If a topological space is compact, then it is also paracompact.

Definition. A  topological space (M, O ) i s said to b e m etrisable i f there exists a  metric d 
such that the topology induced by d is precisely O, i.e. Od = O.

Theorem 5.11 (Stone). Every metrisable space is paracompact.

Example 5.12. The space (Rd, Ostd) is metrisable since Ostd = Od where d = ‖ · ‖2. Hence 
it is paracompact by Stone’s theorem.

Remark 5.13. Paracompactness is, informally, a rather natural property since every ex-
ample of a non-paracompact space looks artificial. One s uch e xample i s t he l ong l ine (or 
Alexandroff line). To construct it, we first observe t hat we c ould “ build” R  by t aking the 
interval [0, 1) and stacking countably many copies of it one after the other. Hence, in a 
sense, R is equivalent to Z × [0, 1). The long line L is defined analogously as L : ω1 × [0, 1), 
where ω1 is an uncountably infinite s et. The resulting space L  i s not paracompact.

Theorem 5.14. Let (M, OM ) be a paracompact space and let (N, ON ) be a compact space. 
Then M × N (equipped with the product topology) is paracompact.

Corollary 5.15. Let (M, OM ) be a paracompact space and let (Ni, ONi ) be compact spaces 
for every 1 ≤ i ≤ n. Then M × N1 × · · · × Nn is paracompact.

Definition. L et (M, OM )  b e a  t opological s pace. A  p artition o f u nity o f M  i s a  s et F 
of continuous maps from M to the interval [0, 1] such that for each p ∈ M the following 
conditions hold:

i) there exists U(p) such that the set {f ∈ F | ∀x ∈ U(p) : f(x) 6= 0} is finite;

ii)
∑

f∈F f(p) = 1.

If C is an open cover, then F is said to be subordinate to the cover C if:

∀ f ∈ F : ∃U ∈ C : f(x) 6= 0⇒ x ∈ U.
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Definition: partition of unity subordinate：实际上是为了在后面定义积分来做的，重点在于Finite上
避免Convergency



Theorem 5.16. Let (M,OM ) be a Hausdorff topological space. Then (M,OM ) is para-
compact if, and only if, every open cover admits a partition of unity subordinate to that
cover.

Example 5.17. Let R be equipped with the standard topology. Then R is paracompact by
Stone’s theorem. Hence, every open cover of R admits a partition of unity subordinate to
that cover. As a simple example, consider F = {f, g}, where:

f(x) =


0 if x ≤ 0

x2 if 0 ≤ x ≤ 1

1 if x ≥ 1

and g(x) =


1 if x ≤ 0

1− x2 if 0 ≤ x ≤ 1

0 if x ≥ 1

Then F is a partition of unity of R. Indeed, f, g : R→ [0, 1] are both continuous, condition
i) is satisfied since F itself is finite, and we have ∀x ∈ R : f(x) + g(x) = 1.

Let C := {(−∞, 1), (0,∞)}. Then C is an open cover of R and since:

f(x) 6= 0⇒ x ∈ (0,∞) and g(x) 6= 0⇒ x ∈ (−∞, 1),

the partition of unity F is subordinate to the open cover C.

5.3 Connectedness and path-connectedness

Definition. A topological space (M,O) is said to be connected unless there exist two
non-empty, non-intersecting open sets A and B such that M = A ∪B.

Example 5.18. Consider (R\{0},Ostd|R\{0}), i.e. R\{0} equipped with the subset topology
inherited from R. This topological space is not connected since (−∞, 0) and (0,∞) are
open, non-empty, non-intersecting sets such that R \ {0} = (−∞, 0) ∪ (0,∞).

Theorem 5.19. The interval [0, 1] ⊆ R equipped with the subset topology is connected.

Theorem 5.20. A topological space (M,O) is connected if, and only if, the only subsets
that are both open and closed are ∅ and M .

Proof. (⇒) Suppose, for the sake of contradiction, that there exists U ⊆ M such that U
is both open and closed and U /∈ {∅,M}. Consider the sets U and M \ U . Clearly,
we have U ∩M \ U = ∅. Moreover, M \ U is open since U is closed. Therefore, U
and M \U are two open, non-empty, non-intersecting sets such that M = U ∪M \U ,
contradicting the connectedness of (M,O).

(⇐) Suppose that (M,O) is not connected. Then there exist open, non-empty, non-
intersecting subsets A,B ⊆M such that M = A ∪B. Clearly, A 6= M , otherwise we
would have B = ∅. Moreover, since B is open, A = M \ B is closed. Hence, A is a
set which is both open and closed and A /∈ {∅,M}.

Definition. A topological space (M,O) is said to be path-connected if for every pair of
points p, q ∈ M there exists a continuous curve γ : [0, 1] → M such that γ(0) = p and
γ(1) = q.
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Example 5.21. The space (Rd,Ostd) is path-connected. Indeed, let p, q ∈ Rd and let:

γ(λ) := p+ λ(q − p).

Then γ is continuous and satisfies γ(0) = p and γ(1) = q.

Example 5.22. Let S := {(x, sin( 1
x)) | x ∈ (0, 1]} ∪ {(0, 0)} be equipped with the subset

topology inherited from R2.

0.5 1
x

y

The space (S,Ostd|S) is connected but not path-connected.

Theorem 5.23. If a topological space is path-connected, then it is also connected.

Proof. Let (M,O) be path-connected but not connected. Then there exist open, non-empty,
non-intersecting subsets A,B ⊂ M such that M = A ∪ B. Let p ∈ A and q ∈ B. Since
(M,O) is path-connected, there exists a continuous curve γ : [0, 1]→M such that γ(0) = p

and γ(1) = q. Then:

[0, 1] = preimγ(M) = preimγ(A ∪B) = preimγ(A) ∪ preimγ(B).

The sets preimγ(A) and preimγ(B) are both open, non-empty and non-intersecting, con-
tradicting the fact that [0, 1] is connected.

5.4 Homotopic curves and the fundamental group

Definition. Let (M,O) be a topological space. Two curves γ, δ : [0, 1]→M such that:

γ(0) = δ(0) and γ(1) = δ(1)

are said to be homotopic if there exists a continuous map h : [0, 1] × [0, 1] → M such that
for all λ ∈ [0, 1]:

h(0, λ) = γ(λ) and h(1, λ) = δ(λ).

Pictorially, two curves are homotopic if they can be continuously deformed into one
another.
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Proposition 5.24. Let γ ∼ δ :⇔ “γ and δ are homotopic”. Then, ∼ is an equivalence
relation.

Definition. Let (M,O) be a topological space. Then, for every p ∈M , we define the space
of loops at p by:

Lp := {γ : [0, 1]→M | γ is continuous and γ(0) = γ(1)}.

Definition. Let Lp be the space of loops at p ∈M . We define the concatenation operation
∗ : Lp ×Lp → Lp by:

(γ ∗ δ)(λ) :=

{
γ(2λ) if 0 ≤ λ ≤ 1

2

δ(2λ− 1) if 1
2 ≤ λ ≤ 1

Definition. Let (M,O) be a topological space. The fundamental group π1(p) of (M,O) at
p ∈M is the set:

π1(p) := Lp/∼ = {[γ] | γ ∈ Lp},

where ∼ is the homotopy equivalence relation, together with the map

• : π1(p)× π1(p)→ π1(p)

(γ, δ) 7→ [γ] • [δ] := [γ ∗ δ].

Remark 5.25. Recall that a group is a pair (G, •) where G is a set and • : G×G→ G is a
map (also called binary operation) such that:

i) ∀ a, b, c ∈ G : (a • b) • c = a • (b • c);

ii) ∃ e ∈ G : ∀ g ∈ G : g • e = e • g = g;

iii) ∀ g ∈ G : ∃ g−1 ∈ G : g • g−1 = g−1 • g = e.

A group is called abelian (or commutative) if, in addition, a • b = b • a for all a, b ∈ G.
A group isomorphism between two groups (G, •) and (H, ◦) is a bijection φ : G → H

such that:
∀ a, b ∈ G : φ(a • b) = φ(a) ◦ φ(b).
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If there exists a group isomorphism between (G, •) and (H, ◦), we say that G and H are
(group theoretic) isomorphic and we write G ∼=grp H.

The operation • is associative (since concatenation is associative); the neutral element
of the fundamental group (π1(p), •) is (the equivalence class of) the constant curve γe
defined by:

γe : [0, 1]→M

λ 7→ γe(0) = p

Finally, for each [γ] ∈ π1(p), the inverse under • is the element [−γ], where −γ is defined
by:

−γ : [0, 1]→M

λ 7→ γ(1− λ)

All the previously discussed topological properties are “boolean-valued”, i.e. a topolog-
ical space is either Hausdorff or not Hausdorff, either connected or not connected, and so
on. The fundamental group is a “group-valued” property, i.e. the value of the property is
not “either yes or no”, but a group.

A property of a topological space is called an invariant if any two homeomorphic spaces
share the property. A classification of topological spaces would be a list of topological
invariants such that any two spaces which share these invariants are homeomorphic. As of
now, no such list is known.

Example 5.26. The 2-sphere is defined as the set:

S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

equipped with the subset topology inherited from R3.

The sphere has the property that all the loops at any point are homotopic, hence the
fundamental group (at every point) of the sphere is the trivial group:

∀ p ∈ S2 : π1(p) = 1 := {[γe]}.

Example 5.27. The cylinder is defined as C := R×S1 equipped with the product topology.
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A loop in C can either go around the cylinder (i.e. around its central axis) or not. If
it does not, then it can be continuously deformed to a point (the identity loop). If it does,
then it cannot be deformed to the identity loop (intuitively because the cylinder is infinitely
long) and hence it is a homotopically different loop. The number of times a loop winds
around the cylinder is called the winding number . Loops with different winding numbers
are not homotopic.

Moreover, loops with different orientations are also not homotopic and hence we have:

∀ p ∈ C : (π1(p), •) ∼=grp (Z,+).

Example 5.28. The 2-torus is defined as the set T 2 := S1 × S1 equipped with the product
topology.

A loop in T 2 can intuitively wind around the cylinder-like part of the torus as well as around
the hole of the torus. That is, there are two independent winding numbers and hence:

∀ p ∈ T 2 : π1(p) ∼=grp Z× Z,

where Z× Z is understood as a group under pairwise addition.
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6 Topological manifolds and bundles

6.1 Topological manifolds

Definition. A paracompact, Hausdorff, topological space (M,O) is called a d-dimensional
(topological) manifold if for every point p ∈ M there exist a neighbourhood U(p) and a
homeomorphism x : U(p)→ x(U(p)) ⊆ Rd. We also write dimM = d.

Intuitively, a d-dimensional manifold is a topological space which locally (i.e. around
each point) looks like Rd. Note that, strictly speaking, what we have just defined are real
topological manifolds. We could define complex topological manifolds as well, simply by
requiring that the map x be a homeomorphism onto an open subset of Cd.

Proposition 6.1. Let M be a d-dimensional manifold and let U, V ⊆ M be open, with
U ∩ V 6= ∅. If x and y are two homeomorphisms

x : U → x(U) ⊆ Rd and y : V → y(V ) ⊆ Rd
′
,

then d = d′.

This ensures that the concept of dimension is indeed well-defined, i.e. it is the same at
every point, at least on each connected component of the manifold.

Example 6.2. Trivially, Rd is a d-dimensional manifold for any d ≥ 1. The space S1 is a
1-dimensional manifold while the spaces S2, C and T 2 are 2-dimensional manifolds.

Definition. Let (M,O) be a topological manifold and let N ⊆M . Then (N,O|N ) is called
a submanifold of (M,O) if it is a manifold in its own right.

Example 6.3. The space S1 is a submanifold of R2 while the spaces S2, C and T 2 are
submanifolds of R3.

Definition. Let (M,OM ) and (N,ON ) be topological manifolds of dimension m and n,
respectively. Then, (M × N,OM×N ) is a topological manifold of dimension m + n called
the product manifold .

Example 6.4. We have T 2 = S1 × S1 not just as topological spaces, but as topological
manifolds as well. This is a special case of the n-torus:

Tn := S1 × S1 × · · · × S1︸ ︷︷ ︸
n times

,

which is an n-dimensional manifold.

Example 6.5. The cylinder C = S1 × R is a 2-dimensional manifold.
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6.2 Bundles

Products are very useful. Very often in physics one intuitively thinks of the product of two
manifolds as attaching a copy of the second manifold to each point of the first. However,
not all interesting manifolds can be understood as products of manifolds. A classic example
of this is the Möbius strip.2

It looks locally like the finite cylinder S1 × [0, 1], which we can picture as the circle S1

(the thicker line in figure) with the finite interval [0, 1] attached to each of its points in a
“smooth” way. The Möbius strip has a “twist”, which makes it globally different from the
cylinder.

Definition. A bundle (of topological manifolds) is a triple (E, π,M) where E and M are
topological manifolds called the total space and the base space respectively, and π is a
continuous, surjective map π : E →M called the projection map.

We will often denote the bundle (E, π,M) by E π−→M .

Definition. Let E π−→ M be a bundle and let p ∈ M . Then, Fp := preimπ({p}) is called
the fibre at the point p.

Intuitively, the fibre at the point p ∈ M is a set of points in E (represented below as
a line) attached to the point p. The projection map sends all the points is the fibre Fp to
the point p.

Fp
E

p ∈M

M

2The TikZ code for the Möbius strip was written by Jake on TeX.SE.
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Example 6.6. A trivial example of a bundle is the product bundle. Let M and N be
manifolds. Then, the triple (M ×N, π,M), where:

π : M ×N →M

(p, q) 7→ p

is a bundle since (one can easily check) π is a continuous and surjective map. Similarly,
(M ×N, π,N) with the appropriate π, is also a bundle.

Example 6.7. In a bundle, different points of the base manifold may have (topologically)
different fibres. For example, consider the bundle E π−→ R where:

Fp := preimπ({p}) ∼=top


S1 if p < 0

{p} if p = 0

[0, 1] if p > 0

Definition. Let E π−→M be a bundle and let F be a manifold. Then, E π−→M is called a
fibre bundle, with (typical) fibre F , if:

∀ p ∈M : preimπ({p}) ∼=top F.

A fibre bundle is often represented diagrammatically as:

F E

M

π

Example 6.8. The bundle M ×N π−→M is a fibre bundle with fibre F := N .

Example 6.9. The Möbius strip is a fibre bundle E π−→ S1, with fibre F := [0, 1], where
E 6= S1 × [0, 1], i.e. the Möbius strip is not a product bundle.

Example 6.10. A C-line bundle over M is the fibre bundle (E, π,M) with fibre C. Note
that the product bundle (M ×C, π,M) is a C-line bundle over M , but a C-line bundle over
M need not be a product bundle.

Definition. Let E π−→M be a bundle. A map σ : M → E is called a (cross-)section of the
bundle if π ◦ σ = idM .

Intuitively, a section is a map σ which sends each point p ∈ M to some point σ(p) in
its fibre Fp, so that the projection map π takes σ(p) ∈ Fp ⊆ E back to the point p ∈M .

Example 6.11. Let (M × F, π,M) be a product bundle. Then, a section of this bundle is a
map:

σ : M →M × F
p 7→ (p, s(p))

where s : M → F is any map.
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Fp

p ∈M

π
σ

M

σ(p)
E

Definition. A sub-bundle of a bundle (E, π,M) is a triple (E′, π′,M ′) where E′ ⊆ E and
M ′ ⊆M are submanifolds and π′ := π|E′ .

Definition. Let (E, π,M) be a bundle and let N ⊆ M be a submanifold. The restricted
bundle (to N) is the triple (E, π′, N) where:

π′ := π|preimπ(N)

Definition. Let E π−→ M and E′ π′−−→ M ′ be bundles and let u : E → E′ and v : M → M ′

be maps. Then (u, v) is called a bundle morphism if the following diagram commutes:

E E′

M M ′

u

π π′

v

i.e. if π′ ◦ u = v ◦ π.

If (u, v) and (u, v′) are both bundle morphisms, then v = v′. That is, given u, if there
exists v such that (u, v) is a bundle morphism, then v is unique.

Definition. Two bundles E π−→ M and E′ π′−−→ M ′ are said to be isomorphic (as bundles)
if there exist bundle morphisms (u, v) and (u−1, v−1) satisfying:

E E′

M M ′

u

π

u−1

π′

v

v−1

Such a (u, v) is called a bundle isomorphism and we write E π−→M ∼=bdl E
′ π′−−→M ′.

Bundle isomorphisms are the structure-preserving maps for bundles.
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Definition. A bundle E π−→ M is said to be locally isomorphic (as a bundle) to a bundle
E′

π′−−→ M ′ if for all p ∈ M there exists a neighbourhood U(p) such that the restricted
bundle:

preimπ(U(p))
π|preimπ(U(p))−−−−−−−−−→ U(p)

is isomorphic to the bundle E′ π′−−→M ′.

Definition. A bundle E π−→M is said to be:

i) trivial if it is isomorphic to a product bundle;

ii) locally trivial if it is locally isomorphic to a product bundle.

Example 6.12. The cylinder C is trivial as a bundle, and hence also locally trivial.

Example 6.13. The Möbious strip is not trivial but it is locally trivial.

From now on, we will mostly consider locally trivial bundles.

Remark 6.14. In quantum mechanics, what is usually called a “wave function” is not a
function at all, but rather a section of a C-line bundle over physical space. However, if we
assume that the C-line bundle under consideration is locally trivial, then each section of
the bundle can be represented (locally) by a map from the base space to the total space
and hence it is appropriate to use the term “wave function”.

Definition. Let E π−→ M be a bundle and let f : M ′ → M be a map from some manifold
M ′. The pull-back bundle of E π−→M induced by f is defined as E′ π′−−→M ′, where:

E′ := {(m′, e) ∈M ′ × E | f(m′) = π(e)}

and π′(m′, e) := m′.

If E′ π′−−→ M ′ is the pull-back bundle of E π−→ M induced by f , then one can easily
construct a bundle morphism by defining:

u : E′ → E

(m′, e) 7→ e

This corresponds to the diagram:

E′ E

M ′ M

π′

u

π

f

Remark 6.15. Sections on a bundle pull back to the pull-back bundle. Indeed, let E′ π′−−→M ′

be the pull-back bundle of E π−→M induced by f .

E′ E

M ′ M

π′ π
σ◦f

σ′

f

σ
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If σ is a section of E π−→M , then σ ◦ f determines a map from M ′ to E which sends each
m′ ∈M ′ to σ(f(m′)) ∈ E. However, since σ is a section, we have:

π(σ(f(m′)) = (π ◦ σ ◦ f)(m′) = (idM ◦f)(m′) = f(m′)

and hence (m′, (σ ◦ f)(m′)) ∈ E′ by definition of E′. Moreover:

π′(m′, (σ ◦ f)(m′)) = m′

and hence the map:

σ′ : M ′ → E′

m′ 7→ (m′, (σ ◦ f)(m′))

satisfies π′ ◦ σ′ = idM ′ and it is thus a section on the pull-back bundle E′ π′−−→M ′.

6.3 Viewing manifolds from atlases

Definition. Let (M,O) be a d-dimensional manifold. Then, a pair (U, x) where U ∈ O
and x : U → x(U) ⊆ Rd is a homeomorphism, is said to be a chart of the manifold.

The component functions (or maps) of x : U → x(U) ⊆ Rd are the maps:

xi : U → R
p 7→ proji(x(p))

for 1 ≤ i ≤ d, where proji(x(p)) is the i-th component of x(p) ∈ Rd. The xi(p) are called
the co-ordinates of the point p ∈ U with respect to the chart (U, x).

Definition. An atlas of a manifold M is a collection A := {(Uα, xα) | α ∈ A} of charts
such that: ⋃

α∈A
Uα = M.

Definition. Two charts (U, x) and (V, y) are said to be C0-compatible if either U ∩ V = ∅
or the map:

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )

is continuous.

Note that y ◦ x−1 is a map from a subset of Rd to a subset of Rd.

U ∩ V ⊆M

x(U ∩ V ) ⊆ Rd y(U ∩ V ) ⊆ Rd

x y

y◦x−1
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Since the maps x and y are homeomorphisms, the composition map y ◦ x−1 is also a
homeomorphism and hence continuous. Therefore, any two charts on a topological manifold
are C0-compatible. This definition my thus seem redundant since it applies to every pair of
charts. However, it is just a “warm up” since we will later refine this definition and define
the differentiability of maps on a manifold in terms of Ck-compatibility of charts.

Remark 6.16. The map y ◦ x−1 (and its inverse x ◦ y−1) is called the co-ordinate change
map or chart transition map.

Definition. A C0-atlas of a manifold is an atlas of pairwise C0-compatible charts.

Note that any atlas is also a C0-atlas.

Definition. A C0-atlas A is said to be a maximal atlas if for every (U, x) ∈ A , we have
(V, y) ∈ A for all (V, y) charts that are C0-compatible with (U, x).

Example 6.17. Not every C0-atlas is a maximal atlas. Indeed, consider (R,Ostd) and the
atlas A := (R, idR). Then A is not maximal since ((0, 1), idR) is a chart which is C0-
compatible with (R, idR) but ((0, 1), idR) /∈ A .

We can now look at “objects on” topological manifolds from two points of view. For
instance, consider a curve on a d-dimensional manifold M , i.e. a map γ : R→M . We now
ask whether this curve is continuous, as it should be if models the trajectory of a particle
on the “physical space” M .

A first answer is that γ : R→M is continuous if it is continuous as a map between the
topological spaces R and M .

However, the answer that may be more familiar to you from undergraduate physics is
the following. We consider only a portion (open subset U) of the physical space M and,
instead of studying the map γ : preimγ(U)→ U directly, we study the map:

x ◦ γ : preimγ(U)→ x(U) ⊆ Rd,

where (U, x) is a chart of M . More likely, you would be checking the continuity of
the co-ordinate maps xi ◦ γ, which would then imply the continuity of the “real” curve
γ : preimγ(U)→ U (real, as opposed to its co-ordinate representation).

y(U) ⊆ Rd

preimγ(U) ⊆ R U ⊆M

x(U) ⊆ Rd

γ

x◦γ

y◦γ

x

y

y◦x−1

At some point you may wish to use a different “co-ordinate system” to answer a different
question. In this case, you would chose a different chart (U, y) and then study the map y ◦γ
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or its co-ordinate maps. Notice however that some results (e.g. the continuity of γ) obtained
in the previous chart (U, x) can be immediately “transported” to the new chart (U, y) via the
chart transition map y ◦ x−1. Moreover, the map y ◦ x−1 allows us to, intuitively speaking,
forget about the inner structure (i.e. U and the maps γ, x and x) which, in a sense, is the
real world, and only consider preimγ(U) ⊆ R and x(U), y(U) ⊆ Rd together with the maps
between them, which is our representation of the real world.
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7 Differentiable structures: definition and classification

7.1 Adding structure by refining the (maximal) atlas

We saw previously that for a topological manifold (M,O), the concept of a C0-atlas was
fully redundant since every atlas is also a C0-atlas. We will now generalise the notion of a
C0-atlas, or more precisely, the notion of C0-compatibility of charts, to something which is
non-trivial and non-redundant.

Definition. An atlas A for a topological manifold is called a R-atlas if any two charts
(U, x), (V, y) ∈ A are R-compatible.

In other words, either U ∩ V = ∅ or if U ∩ V 6= ∅, then the transition map y ◦ x−1

from x(U ∩ V ) to y(U ∩ V ) must be R.

U ∩ V ⊆M

x(U ∩ V ) ⊆ RdimM y(U ∩ V ) ⊆ RdimM

x y

y◦x−1

Before you think Dr Schuller finally went nuts, the symbol R is being used as a placeholder
for any of the following:

• R = C0: this just reduces to the previous definition;

• R = Ck: the transition maps are k-times continuously differentiable as maps between
open subsets of RdimM ;

• R = C∞: the transition maps are smooth (infinitely many times differentiable); equiv-
alently, the atlas is Ck for all k ≥ 0;

• R = Cω: the transition maps are (real) analytic, which is stronger than being smooth;

• R = complex: if dimM is even, M is a complex manifold if the transition maps
are continuous and satisfy the Cauchy-Riemann equations; its complex dimension is
1
2 dimM .

As an aside, if you haven’t met the Cauchy-Riemann equations yet, recall than since
R2 and C are isomorphic as sets, we can identify the function

f : R2 → R2

(x, y) 7→ (u(x, y), v(x, y))

where u, v : R2 → R, with the function

f : C → C
x+ iy 7→ u(x, y) + iv(x, y).
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If u and v are real differentiable at (x0, y0), then f = u + iv is complex differentiable at
z0 = x0 + iy0 if, and only if, u and v satisfy

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) ∧ ∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0),

which are known as the Cauchy-Riemann equations. Note that differentiability in the
complex plane is a much stronger condition than differentiability over the real numbers. If
you want to know more, you should take a course in complex analysis or function theory.

We now go back to manifolds.

Theorem 7.1 (Whitney). Any maximal Ck-atlas, with k ≥ 1, contains a C∞-atlas. More-
over, any two maximal Ck-atlases that contain the same C∞-atlas are identical.

An immediate implication is that if we can find a C1-atlas for a manifold, then we
can also assume the existence of a C∞-atlas for that manifold. This is not the case for
topological manifolds in general: a space with a C0-atlas may not admit any C1-atlas. But
if we have at least a C1-atlas, then we can obtain a C∞-atlas simply by removing charts,
keeping only the ones which are C∞-compatible.

Hence, for the purposes of this course, we will not distinguish between Ck (k ≥ 1) and
C∞-manifolds in the above sense.

We now give the explicit definition of a Ck-manifold.

Definition. A Ck-manifold is a triple (M,O,A ), where (M,O) is a topological manifold
and A is a maximal Ck-atlas.

Remark 7.2. A given topological manifold can carry different incompatible atlases.

Note that while we only defined compatibility of charts, it should be clear what it
means for two atlases of the same type to be compatible.

Definition. Two R-atlases A , B are compatible if their union A ∪B is again a R-atlas,
and are incompatible otherwise.

Alternatively, we can define the compatibility of two atlases in terms of the compati-
bility of any pair of charts, one from each atlas.

Example 7.3. Let (M,O) = (R,Ostd). Consider the two atlases A = {(R, idR)} and
B = {(R, x)}, where x : a 7→ 3

√
a. Since they both contain a single chart, the compatibility

condition on the transition maps is easily seen to hold (in both cases, the only transition
map is idR). Hence they are both C∞-atlases.

Consider now A ∪ B. The transition map idR ◦x−1 is the map a 7→ a3, which is
smooth. However, the other transition map, x ◦ id−1

R , is the map x, which is not even
differentiable once (the first derivative at 0 does not exist). Consequently, A and B are
not even C1-compatible.

The previous example shows that we can equip the real line with (at least) two different
incompatible C∞-structures. This looks like a disaster as it implies that there is an arbitrary
choice to be made about which differentiable structure to use. Fortunately, the situation is
not as bad as it looks, as we will see in the next sections.
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7.2 Differentiable manifolds

Definition. Let φ : M → N be a map, where (M,OM ,AM ) and (N,ON ,AN ) are Ck-
manifolds. Then φ is said to be (Ck-)differentiable at p ∈M if for some charts (U, x) ∈ AM

with p ∈ U and (V, y) ∈ AN with φ(p) ∈ V , the map y ◦ φ ◦ x−1 is k-times continuously
differentiable at x(p) ∈ x(U) ⊆ RdimM in the usual sense.

U ⊆M V ⊆ N

x(U) ⊆ RdimM y(V ) ⊆ RdimN

φ

x y

y◦φ◦x−1

The above diagram shows a typical theme with manifolds. We have a map φ : M → N

and we want to define some property of φ at p ∈ M analogous to some property of maps
between subsets of Rd. What we typically do is consider some charts (U, x) and (V, y) as
above and define the desired property of φ at p ∈ U in terms of the corresponding property
of the downstairs map y ◦ φ ◦ x−1 at the point x(p) ∈ Rd.

Notice that in the previous definition we only require that some charts from the two
atlases satisfy the stated property. So we should worry about whether this definition de-
pends on which charts we pick. In fact, this “lifting” of the notion of differentiability from
the chart representation of φ to the manifold level is well-defined.

Proposition 7.4. The definition of differentiability is well-defined.

Proof. We want to show that if y ◦ φ ◦ x−1 is differentiable at x(p) for some (U, x) ∈ AM

with p ∈ U and (V, y) ∈ AN with φ(p) ∈ V , then ỹ ◦ φ ◦ x̃−1 is differentiable at x̃(p) for all
charts (Ũ , x̃) ∈ AM with p ∈ Ũ and (Ṽ , ỹ) ∈ AN with φ(p) ∈ Ṽ .

x̃(U ∩ Ũ) ⊆ RdimM ỹ(V ∩ Ṽ ) ⊆ RdimN

U ∩ Ũ ⊆M V ∩ Ṽ ⊆ N

x(U ∩ Ũ) ⊆ RdimM y(V ∩ Ṽ ) ⊆ RdimN

ỹ◦φ◦x̃−1

φ

x

x̃

y

ỹ

y◦φ◦x−1

x̃◦x−1 ỹ◦y−1

Consider the map x̃ ◦ x−1 in the diagram above. Since the charts (U, x) and (Ũ , x̃) belong
to the same Ck-atlas AM , by definition the transition map x̃ ◦ x−1 is Ck-differentiable as a
map between subsets of RdimM , and similarly for ỹ ◦y−1. We now notice that we can write:

ỹ ◦ φ ◦ x̃−1 = (ỹ ◦ y−1) ◦ (y ◦ φ ◦ x−1) ◦ (x̃ ◦ x−1)−1

and since the composition of Ck maps is still Ck, we are done.
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This proof shows the significance of restricting to Ck-atlases. Such atlases only con-
tain charts for which the transition maps are Ck, which is what makes our definition of
differentiability of maps between manifolds well-defined.

The same definition and proof work for smooth (C∞) manifolds, in which case we talk
about smooth maps. As we said before, this is the case we will be most interested in.

Example 7.5. Consider the smooth manifolds (Rd,Ostd,Ad) and (Rd′ ,Ostd,A′
d
), where Ad)

and A′
d
) are the maximal atlases containing the charts (Rd, idRd) and (Rd′ , idRd′ ) respec-

tively, and let f : Rd → Rd′ be a map. The diagram defining the differentiability of f with
respect to these charts is

Rd Rd′

Rd Rd′

f

idRd idRd′

idRd′ ◦f◦(idRd )−1

and, by definition, the map f is smooth as a map between manifolds if, and only if, the
map idRd′ ◦f ◦ (idRd)

−1 = f is smooth in the usual sense.

Example 7.6. Let (M,O,A ) be a d-dimensional smooth manifold and let (U, x) ∈ A . Then
x : U → x(U) ⊆ Rd is smooth. Indeed, we have

U x(U)

x(U) ⊆ Rd x(U) ⊆ Rd

x

x idx(U)

idx(U) ◦x◦x−1

Hence x : U → x(U) is smooth if, and only if, the map idx(U) ◦x ◦ x−1 = idx(U) is smooth
in the usual sense, which it certainly is.

The coordinate maps xi := proji ◦ x : U → R are also smooth. Indeed, consider the
diagram

U R

x(U) ⊆ Rd R

xi

x idR

idR◦xi◦x−1

Then, xi is smooth if, and only if, the map

idR ◦ xi ◦ x−1 = xi ◦ x−1 = proji

is smooth in the usual sense, which it certainly is.
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7.3 Classification of differentiable structures

Definition. Let φ : M → N be a bijective map between smooth manifolds. If both φ and
φ−1 are smooth, then φ is said to be a diffeomorphism.

Diffeomorphisms are the structure preserving maps between smooth manifolds.

Definition. Two manifolds (M,OM ,AM ), (N,ON ,AN ) are said to be diffeomorphic if
there exists a diffeomorphism φ : M → N between them. We write M ∼=diff N .

Note that if the differentiable structure is understood (or irrelevant), we typically write
M instead of the triple (M,OM ,AM ).

Remark 7.7. Being diffeomorphic is an equivalence relation. In fact, it is customary to con-
sider diffeomorphic manifolds to be the same from the point of view of differential geometry.
This is similar to the situation with topological spaces, where we consider homeomorphic
spaces to be the same from the point of view of topology. This is typical of all structure
preserving maps.

Armed with the notion of diffeomorphism, we can now ask the following question: how
many smooth structures on a given topological space are there, up to diffeomorphism?

The answer is quite surprising: it depends on the dimension of the manifold!

Theorem 7.8 (Radon-Moise). Let M be a manifold with dimM = 1, 2, or 3. Then there
is a unique smooth structure on M up to diffeomorphism.

Recall that in a previous example, we showed that we can equip (R,Ostd) with two
incompatible atlases A and B. Let Amax and Bmax be their extensions to maximal atlases,
and consider the smooth manifolds (R,Ostd,Amax) and (R,Ostd,Bmax). Clearly, these are
different manifolds, because the atlases are different, but since dimR = 1, they must be
diffeomorphic.

The answer to the case dimM > 4 (we emphasize dimM 6= 4) is provided by surgery
theory. This is a collection of tools and techniques in topology with which one obtains a
new manifold from given ones by performing surgery on them, i.e. by cutting, replacing and
gluing parts in such a way as to control topological invariants like the fundamental group.
The idea is to understand all manifolds in dimensions higher than 4 by performing surgery
systematically. In particular, using surgery theory, it has been shown that there are only
finitely many smooth manifolds (up to diffeomorphism) one can make from a topological
manifold.

This is not as neat as the previous case, but since there are only finitely many structures,
we can still enumerate them, i.e. we can write an exhaustive list.

While finding all the differentiable structures may be difficult for any given manifold,
this theorem has an immediate impact on a physical theory that models spacetime as a
manifold. For instance, some physicists believe that spacetime should be modelled as a
10-dimensional manifold (we are neither proposing nor condemning this view). If that is
indeed the case, we need to worry about which differentiable structure we equip our 10-
dimensional manifold with, as each different choice will likely lead to different predictions.
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But since there are only finitely many such structures, physicists can, at least in principle,
devise and perform finitely many experiments to distinguish between them and determine
which is the right one, if any.

We now turn to the special case dimM = 4. The result is that if M is a non-compact
topological manifold, then there are uncountably many non-diffeomorphic smooth struc-
tures that we can equip M with. In particular, this applies to (R4,Ostd).

In the compact case there are only partial results. By way of example, here is one such
result.

Proposition 7.9. If (M,O), with dimM = 4, has b2 > 18, where b2 is the second Betti
number, then there are countably many non-diffeomorphic smooth structures that we can
equip (M,O) with.

Betti numbers are defined in terms of homology groups, but intuitively we have:

• b0 is the number of connected components a space has;

• b1 is the number of circular (1-dimensional) holes a space has;

• b2 is the number of 2-dimensional holes a space has;

and so on. Hence if a manifold has a number of 2-dimensional holes greater than 18, then
there only countably many structures that we can choose from, but they are still infinitely
many.
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8 Tensor space theory I: over a field

8.1 Vector spaces

We begin with a quick review of vector spaces.

Definition. An (algebraic) field is a triple (K,+, ·), where K is a set and +, · are maps
K ×K → K satisfying the following axioms:

• (K,+) is an abelian group, i.e.

i) ∀ a, b, c ∈ K : (a+ b) + c = a+ (b+ c);

ii) ∃ 0 ∈ K : ∀ a ∈ K : a+ 0 = 0 + a = a;

iii) ∀ a ∈ K : ∃−a ∈ K : a+ (−a) = (−a) + a = 0;

iv) ∀ a, b ∈ K : a+ b = b+ a;

• (K∗, ·), where K∗ := K \ {0}, is an abelian group, i.e.

v) ∀ a, b, c ∈ K∗ : (a · b) · c = a · (b · c);
vi) ∃ 1 ∈ K∗ : ∀ a ∈ K∗ : a · 1 = 1 · a = a;

vii) ∀ a ∈ K∗ : ∃ a−1 ∈ K∗ : a · a−1 = a−1 · a = 1;

viii) ∀ a, b ∈ K∗ : a · b = b · a;

• the maps + and · satisfy the distributive property:

ix) ∀ a, b, c ∈ K : (a+ b) · c = a · c+ b · c.

Remark 8.1. In the above definition, we included axiom iv for the sake of clarity, but in
fact it can be proven starting from the other axioms.

Remark 8.2. A weaker notion that we will encounter later is that of a ring. This is also
defined as a triple (R,+, ·), but we do not require axiom vi, vii and viii to hold. If a
ring satisfies axiom vi, it is called a unital ring, and if it satisfies axiom viii, it is called a
commutative ring. We will mostly consider unital rings, a call them just rings.

Example 8.3. The triple (Z,+, ·) is a commutative, unital ring. However, it is not a field
since 1 and −1 are the only two elements which admit an inverse under multiplication.

Example 8.4. The sets Q, R, C are all fields under the usual + and · operations.

Example 8.5. An example of a non-commutative ring is the set of real m × n matrices
Mm×n(R) under the usual operations.

Definition. Let (K,+, ·) be a field. A K-vector space, or vector space over K is a triple
(V,⊕,�), where V is a set and

⊕ : V × V → V

� : K × V → V

are maps satisfying the following axioms:
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• (V,⊕) is an abelian group;

• the map � is an action of K on (V,⊕):

i) ∀λ ∈ K : ∀ v, w ∈ V : λ� (v ⊕ w) = (λ� v)⊕ (λ� w);

ii) ∀λ, µ ∈ K : ∀ v ∈ V : (λ+ µ)� v = (λ� v)⊕ (µ� v);

iii) ∀λ, µ ∈ K : ∀ v ∈ V : (λ · µ)� v = λ� (µ� v);

iv) ∀ v ∈ V : 1� v = v.

Vector spaces are also called linear spaces. Their elements are called vectors, while
the elements of K are often called scalars, and the map � is called scalar multiplication.
You should already be familiar with the various vector space constructions from your linear
algebra course. For example, recall:

Definition. Let (V,⊕,�) be a vector space over K and let U ⊆ V be non-empty. Then
we say that (U,⊕|U×U ,�|K×U ) is a vector subspace of (V,⊕,�) if:

i) ∀u1, u2 ∈ U : u1 ⊕ u2 ∈ U ;

ii) ∀u ∈ U : ∀λ ∈ K : λ� u ∈ U .

More succinctly, if ∀u1, u2 ∈ U : ∀λ ∈ K : (λ� u1)⊕ u2 ∈ U .

Also recall that if we have n vector spaces over K, we can form the n-fold Cartesian
product of their underlying sets and make it into a vector space over K by defining the
operations ⊕ and � componentwise.

As usual by now, we will look at the structure-preserving maps between vector spaces.

Definition. Let (V,⊕,�), (W,�,�) be vector spaces over the same fieldK and let f : V →
W be a map. We say that f is a linear map if for all v1, v2 ∈ V and all λ ∈ K

f((λ� v1)⊕ v2) = (λ� f(v1))� f(v2).

From now on, we will drop the special notation for the vector space operations and
suppress the dot for scalar multiplication. For instance, we will write the equation above
as f(λv1 + v2) = λf(v1) + f(v2), hoping that this will not cause any confusion.

Definition. A bijective linear map is called a linear isomorphism of vector spaces. Two
vector spaces are said to be isomorphic is there exists a linear isomorphism between them.
We write V ∼=vec W .

Remark 8.6. Note that, unlike what happens with topological spaces, the inverse of a
bijective linear map is automatically linear, hence we do not need to specify this in the
definition of linear isomorphism.

Definition. Let V and W be vector spaces over the same field K. Define the set

Hom(V,W ) := {f | f : V
∼−→W},

where the notation f : V
∼−→W stands for “f is a linear map from V to W ”.

– 55 –



The hom-set Hom(V,W ) can itself be made into a vector space over K by defining:

| : Hom(V,W )×Hom(V,W )→ Hom(V,W )

(f, g) 7→ f | g

where

f | g : V
∼−→W

v 7→ (f | g)(v) := f(v) + g(v),

and

⟐ : K ×Hom(V,W )→ Hom(V,W )

(λ, f) 7→ λ⟐ f

where

λ⟐ f : V
∼−→W

v 7→ (λ⟐ f)(v) := λf(v).

It is easy to check that both f | g and λ ⟐ f are indeed linear maps from V to W . For
instance, we have:

(λ⟐ f)(µv1 + v2) = λf(µv1 + v2) (by definition)

= λ(µf(v1) + f(v2)) (since f is linear)

= λµf(v1) + λf(v2) (by axioms i and iii)

= µλf(v1) + λf(v2) (since K is a field)

= µ(λ⟐ f)(v1) + (λ⟐ f)(v2)

so that λ⟐ f ∈ Hom(V,W ). One should also check that | and ⟐ satisfy the vector space
axioms.

Remark 8.7. Notice that in the definition of vector space, none of the axioms require that
K necessarily be a field. In fact, just a (unital) ring would suffice. Vector spaces over rings,
have a name of their own. They are called modules over a ring, and we will meet them
later.

For the moment, it is worth pointing out that everything we have done so far applies
equally well to modules over a ring, up to and including the definition of Hom(V,W ).
However, if we try to make Hom(V,W ) into a module, we run into trouble. Notice that
in the derivation above, we used the fact the multiplication in a field is commutative. But
this is not the case in general in a ring.

The following are commonly used terminology.

Definition. Let V be a vector space. An endomorphism of V is a linear map V → V . We
write End(V ) := Hom(V, V ).
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Definition. Let V be a vector space. An automorphism of V is a linear isomorphism
V → V . We write Aut(V ) := {f ∈ End(V ) | f is an isomorphism}.

Remark 8.8. Note that, unlike End(V ), Aut(V ) is not a vector space as was claimed in
lecture. It however a group under the operation of composition of linear maps.

Definition. Let V be a vector space over K. The dual vector space to V is

V ∗ := Hom(V,K),

where K is considered as a vector space over itself.

The dual vector space to V is the vector space of linear maps from V to the underlying
field K, which are variously called linear functionals, covectors, or one-forms on V . The
dual plays a very important role, in that from a vector space and its dual, we will construct
the tensor products.

8.2 Tensors and tensor spaces

Definition. Let V , W , Z be vector spaces over K. A map f : V ×W → Z is said to be
bilinear if

• ∀w ∈W : ∀ v1, v2 ∈ V : ∀λ ∈ K : f(λv1 + v2, w) = λf(v1, w) + f(v2, w);

• ∀ v ∈ V : ∀w1, w2 ∈W : ∀λ ∈ K : f(v, λw1 + w2) = λf(v, w1) + f(v, w2);

i.e. if the maps v 7→ f(v, w), for any fixed w, and w 7→ f(v, w), for any fixed v, are both
linear as maps V → Z and W → Z, respectively.

Remark 8.9. Compare this with the definition of a linear map f : V ×W ∼−→ Z:

∀x, y ∈ V ×W : ∀λ ∈ K : f(λx+ y) = λf(x) + f(y).

More explicitly, if x = (v1, w1) and y = (v2, w2), then:

f(λ(v1, w1) + (v2, w2)) = λf((v1, w1)) + f((v2, w2)).

A bilinear map out of V × W is not the same as a linear map out of V × W . In fact,
bilinearity is just a special kind of non-linearity.

Example 8.10. The map f : R2 → R given by (x, y) 7→ x+y is linear but not bilinear, while
the map (x, y) 7→ xy is bilinear but not linear.

We can immediately generalise the above to define multilinear maps out of a Cartesian
product of vector spaces.

Definition. Let V be a vector space over K. A (p, q)-tensor T on V is a multilinear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
p copies

×V × · · · × V︸ ︷︷ ︸
q copies

→ K.

We write

T pq V := V ⊗ · · · ⊗ V︸ ︷︷ ︸
p copies

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q copies

:= {T | T is a (p, q)-tensor on V }.
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Definition. A type (p, 0) tensor is called a covariant p-tensor, while a tensor of type (0, q)

is called a contravariant q-tensor.

Remark 8.11. By convention, a (0, 0) on V is just an element of K, and hence T 0
0 V = K.

Remark 8.12. Note that to define T pq V as a set, we should be careful and invoke the principle
of restricted comprehension, i.e. we should say where the T s are coming from. In general,
say we want to build a set of maps f : A → B satisfying some property p. Recall that the
notation f : A→ B is hiding the fact that is a relation (indeed, a functional relation), and
a relation between A and B is a subset of A×B. Therefore, we ought to write:

{f ∈ P(A×B) | f : A→ B and p(f)}.

In the case of T pq V we have:

T pq V :=
{
T ∈ P

(
V ∗ × · · · × V ∗︸ ︷︷ ︸

p copies

×V × · · · × V︸ ︷︷ ︸
q copies

×K
)
| T is a (p, q)-tensor on V

}
,

although we will not write this down every time.

The set T pq V can be equipped with a K-vector space structure by defining

⊕ : T pq V × T pq V → T pq V

(T, S) 7→ T ⊕ S

and

� : K × T pq V → T pq V

(λ, T ) 7→ λ� T,

where T ⊕ S and λ� T are defined pointwise, as we did with Hom(V,W ).
We now define an important way of obtaining a new tensor from two given ones.

Definition. Let T ∈ T pq V and S ∈ T rs V . The tensor product of T and S is the tensor
T ⊗ S ∈ T p+rq+s V defined by:

(T ⊗ S)(ω1, . . . , ωp, ωp+1, . . . , ωp+r, v1,. . . , vq, vq+1, . . . , vq+s)

:= T (ω1, . . . , ωp, v1,. . . , vq)S(ωp+1, . . . , ωp+r, vq+1, . . . , vq+s),

with ωi ∈ V ∗ and vi ∈ V .

Some examples are in order.

Example 8.13. a) T 0
1 V := {T | T : V

∼−→ K} = Hom(V,K) =: V ∗. Note that here
multilinear is the same as linear since the maps only have one argument.
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b) T 1
1 V ≡ V ⊗ V ∗ := {T | T is a bilinear map V ∗ × V → K}. We claim that this is

the same as End(V ∗). Indeed, given T ∈ V ⊗ V ∗, we can construct T̂ ∈ End(V ∗) as
follows:

T̂ : V ∗
∼−→ V ∗

ω 7→ T (−, ω)

where, for any fixed ω, we have

T (−, ω) : V
∼−→ K

v 7→ T (v, ω).

The linearity of both T̂ and T (−, ω) follows immediately from the bilinearity of T .
Hence T (−, ω) ∈ V ∗ for all ω, and T̂ ∈ End(V ∗). This correspondence is invertible,
since can reconstruct T from T̂ by defining

T : V × V ∗ → K

(v, ω) 7→ T (v, ω) := (T̂ (ω))(v).

The correspondence is in fact linear, hence an isomorphism, and thus

T 1
1 V
∼=vec End(V ∗).

Other examples we would like to consider are

c) T 0
1 V

?∼=vec V : while you will find this stated as true in some physics textbooks, it is
in fact not true in general;

d) T 1
1 V

?∼=vec End(V ): This is also not true in general;

e) (V ∗)∗
?∼=vec V : This only holds if V is finite-dimensional.

The definition of dimension hinges on the notion of a basis. Given a vector space
Without any additional structure, the only notion of basis that we can define is a so-called
Hamel basis.

Definition. Let (V,+, ·) be a vector space over K. A subset B ⊆ V is called a Hamel basis
for V if

• every finite subset {b1, . . . , bN} of B is linearly independent, i.e.

N∑
i=1

λibi = 0 ⇒ λ1 = · · · = λN = 0;

• B is a generating or spanning set of V , i.e.

∀ v ∈ V : ∃ v1, . . . , vM ∈ K : ∃ b1, . . . , bM ∈ B : v =
M∑
i=1

vibi.
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Remark 8.14. We can write the second condition more succinctly by defining

spanK(B) :=

{ n∑
i=1

λibi

∣∣∣ λi ∈ K ∧ bi ∈ B ∧ n ≥ 1

}
and thus writing V = spanK(B).

Remark 8.15. Note that we have been using superscripts for the elements of K, and these
should not be confused with exponents.

The following characterisation of a Hamel basis is often useful.

Proposition 8.16. Let V be a vector space and B a Hamel basis of V . Then B is a minimal
spanning and maximal independent subset of V , i.e., if S ⊆ V , then

• span(S) = V ⇒ |S| ≥ |B|;

• S is linearly independent ⇒ |S| ≤ |B|.

Definition. Let V be a vector space. The dimension of V is dimV := |B|, where B is a
Hamel basis for V .

Even though we will not prove it, it is the case that every Hamel basis for a given
vector space has the same cardinality, and hence the notion of dimension is well-defined.

Proposition 8.17. If dimV <∞ and S ⊆ V , then we have the following:

• if spanK(S) = V and |S| = dimV , then S is a Hamel basis of V ;

• if S is linearly independent and |S| = dimV , then S is a Hamel basis of V .

Theorem 8.18. If dimV <∞, then (V ∗)∗ ∼=vec V .

Sketch of proof. One constructs an explicit isomorphism as follows. Define the evaluation
map as

ev : V
∼−→ (V ∗)∗

v 7→ evv

where

evv : V ∗
∼−→ K

ω 7→ evv(ω) := ω(v)

The linearity of ev follows immediately from the linearity of the elements of V ∗, while that
of evv from the fact that V ∗ is a vector space. One then shows that ev is both injective
and surjective, and hence an isomorphism.

Remark 8.19. Note that while we need the concept of basis to state this result (since we
require dimV < ∞), the isomorphism that we have constructed is independent of any
choice of basis.
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Remark 8.20. It is not hard to show that (V ∗)∗ ∼=vec V implies T 0
1 V
∼=vec V and T 1

1 V
∼=vec

End(V ). So the last two hold in finite dimensions, but they need not hold in infinite
dimensions.

Remark 8.21. While a choice of basis often simplifies things, when defining new objects
it is important to do so without making reference to a basis. If we do define something
in terms of a basis (e.g. the dimension of a vector space), then we have to check that the
thing is well-defined, i.e. it does not depend on which basis we choose. Some people say:
“A gentleman only chooses a basis if he must.”

If V is finite-dimensional, then V ∗ is also finite-dimensional and V ∼=vec V
∗. Moreover,

given a basis B of V , there is a spacial basis of V ∗ associated to B.

Definition. Let V be a finite-dimensional vector space with basis B = {e1, . . . , edimV }.
The dual basis to B is the unique basis B′ = {f1, . . . , fdimV } of V ∗ such that

∀ 1 ≤ i, j ≤ dimV : f i(ej) = δij :=

{
1 if i = j

0 if i 6= j

Remark 8.22. If V is finite-dimensional, then V is isomorphic to both V ∗ and (V ∗)∗. In
the case of V ∗, an isomorphism is given by sending each element of a basis B of V to a
different element of the dual basis B′, and then extending linearly to V .

You will (and probably already have) read that a vector space is canonically isomorphic
to its double dual, but not canonically isomorphic to its dual, because an arbitrary choice
of basis on V is necessary in order to provide an isomorphism.

The proper treatment of this matter falls within the scope of category theory, and the
relevant notion is called natural isomorphism. See, for instance, the book Basic Category
Theory by Tom Leinster for an introduction to the subject.

Once we have a basis B, the expansion of v ∈ V in terms of elements of B is, in fact,
unique. Hence we can meaningfully speak of the components of v in the basis B. The notion
of coordinates can also be generalised to the case of tensors.

Definition. Let V be a finite-dimensional vector space overK with basis B = {e1, . . . , edimV }
and let T ∈ T pq V . We define the components of T in the basis B to be the numbers

T
a1...ap

b1...bq
:= T (fa1 , . . . , fap , eb1 , . . . , ebq) ∈ K,

where 1 ≤ ai, bj ≤ dimV and {f1, . . . , fdimV } is the dual basis to B.

Just as with vectors, the components completely determine the tensor. Indeed, we can
reconstruct the tensor from its components by using the basis:

T =
dimV∑
a1=1

· · ·
dimV∑
bq=1︸ ︷︷ ︸

p+q sums

T
a1...ap

b1...bq
ea1 ⊗ · · · ⊗ eap ⊗ f b1 ⊗ · · · ⊗ f bq ,

where the eais are understood as elements of T 1
0 V
∼=vec V and the f bis as elements of

T 0
1 V
∼=vec V

∗. Note that each summand is a (p, q)-tensor and the (implicit) multiplication
between the components and the tensor product is the scalar multiplication in T pq V .
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Change of basis

Let V be a vector space over K with d = dimV <∞ and let {e1, . . . , ed} be a basis of V .
Consider a new basis {ẽ1, . . . , ẽd}. Since the elements of the new basis are also elements of
V , we can expand them in terms of the old basis. We have:

ẽi =

d∑
j=1

Aji ej for 1 ≤ i ≤ d.

for some Aji ∈ K. Similarly, we have

ei =

d∑
j=1

Bj
i ẽj for 1 ≤ i ≤ d.

for some Bj
i ∈ K. It is a standard linear algebra result that the matrices A and B, with

entries Aji and B
j
i respectively, are invertible and, in fact, A−1 = B.

8.3 Notational conventions

Einstein’s summation convention

From now on, we will employ the Einstein’s summation convention, which consists in sup-
pressing the summation sign when the indices to be summed over each appear once as a
subscript and once as a superscript in the same term. For example, we write

v = viei and T = T ijkei ⊗ ej ⊗ f
k

instead of

v =
d∑
i=1

viei and T =
d∑
i=1

d∑
j=1

d∑
k=1

T ijkei ⊗ ej ⊗ f
k.

Indices that are summed over are called dummy indices; they always appear in pairs and
clearly it doesn’t matter which particular letter we choose to denote them, provided it
doesn’t already appear in the expression. Indices that are not summed over are called
free indices; expressions containing free indices represent multiple expressions, one for each
value of the free indices; free indices must match on both sides of an equation. For example

viei = vkek, T ijk = T imjkm, Aij = CkC
kBij + CiC

kBkj

are all valid expressions, while

ckviei = ckvkek, T ijj = T imjkm, Aij = CkC
k + CiC

lBlj

are not. The ranges over which the indices run are usually understood and not written out.
The convention on which indices go upstairs and which downstairs (which we have

already been using) is that:
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• the basis vectors of V carry downstairs indices;

• the basis vectors of V ∗ carry upstairs indices;

• all other placements are enforced by the Einstein’s summation convention.

For example, since the components of a vector must multiply the basis vectors and be
summed over, the Einstein’s summation convention requires that they carry upstair indices.

Example 8.23. Using the summation convention, we have:

a) fa(v) = fa(vbeb) = vbfa(eb) = vbδab = va;

b) ω(eb) = (ωaf
a)(eb) = ωaf

a(eb) = ωb;

c) ω(v) = ωaf
a(vbeb) = ωav

a;

where v ∈ V , ω ∈ V ∗, {ei} is a basis of V and {f j} is the dual basis to {ei}.
Remark 8.24. The Einstein’s summation convention should only be used when dealing with
linear spaces and multilinear maps. The reason for this is the following. Consider a map
φ : V ×W → Z, and let v = viei ∈ V and w = wiẽi ∈W . Then we have:

φ(v, w) = φ

( d∑
i=1

viei,

d̃∑
j=1

wj ẽj

)
=

d∑
i=1

d̃∑
j=1

φ(viei, w
j ẽj) =

d∑
i=1

d̃∑
j=1

viwjφ(ei, ẽj).

Note that by suppressing the greyed out summation signs, the second and third term above
are indistinguishable. But this is only true if φ is bilinear! Hence the summation convention
should not be used (at least, not without extra care) in other areas of mathematics.

Remark 8.25. Having chosen a basis for V and the dual basis for V ∗, it is very tempting to
think of v = viei ∈ V and ω = ωif

i ∈ V ∗ as d-tuples of numbers. In order to distinguish
them, one may choose to write vectors as columns of numbers and covectors as rows of
numbers:

v = viei ! v =̂

 v1

...
vd


and

ω = ωif
i ! ω =̂ (ω1, . . . , ωd).

Given φ ∈ End(V ) ∼=vec T
1
1 V , recall that we can write φ = φij ei⊗f j , where φij := φ(f i, ej)

are the components of φ with respect to the chosen basis. It is then also very tempting to
think of φ as a square array of numbers:

φ = φij ei ⊗ f j ! φ =̂


φ1

1 φ
1
2 · · · φ1

d

φ2
1 φ

2
2 · · · φ2

d
...

...
. . .

...
φd1 φ

d
2 · · · φdd


The convention here is to think of the i index on φij as a row index, and of j as a column
index.
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We cannot stress enough that this is pure convention. Its usefulness stems from the
following example.

Example 8.26. If dimV < ∞, then we have End(V ) ∼=vec T
1
1 V . Explicitly, if φ ∈ End(V ),

we can think of φ ∈ T 1
1 V , using the same symbol, as

φ(ω, v) := ω(φ(v)).

Hence the components of φ ∈ End(V ) are φab := fa(φ(eb)).
Now consider φ, ψ ∈ End(V ). Let us determine the components of φ ◦ ψ. We have:

(φ ◦ ψ)ab := (φ ◦ ψ)(fa, eb)

:= fa((φ ◦ ψ)(eb))

= fa((φ(ψ(eb)))

= fa(φ(ψmb em))

= ψmbf
a(φ(em))

:= ψmb φ
a
m.

The multiplication in the last line is the multiplication in the field K, and since that’s
commutative, we have ψmb φ

a
m = φam ψ

m
b. However, in light of the convention introduced

in the previous remark, the latter is preferable. Indeed, if we think of the superscripts as
row indices and of the subscripts as column indices, then φam ψ

m
b is the entry in row a,

column b, of the matrix product φψ.
Similarly, ω(v) = ωmv

m can be thought of as the dot product ω · v ≡ ωT v, and

φ(v, w) = wa φ
a
b v

b ! ωTφv.

The last expression is could mislead you into thinking that the transpose is a “good” notion,
but in fact it is not. It is very bad notation. It almost pretends to be basis independent,
but it is not at all.

The moral of the story is that you should try your best not to think of vectors, covectors
and tensors as arrays of numbers. Instead, always try to understand them from the abstract,
intrinsic, component-free point of view.

Change of components under a change of basis

Recall that if {ea} and {ẽa} are basis of V , we have

ẽa = Abaeb and ea = Bm
aẽm,

with A−1 = B. Note that in index notation, the equation AB = I reads AamBm
b = δab .

We now investigate how the components of vectors and covectors change under a change
of basis.

a) Let v = vaea = ṽaẽa ∈ V . Then:

va = fa(v) = fa(ṽbẽb) = ṽbfa(ẽb) = ṽbfa(Ambem) = Ambṽ
bfa(em) = Aabṽ

b.
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b) Let ω = ωaf
a = ω̃af̃

a ∈ V ∗. Then:

ωa := ω(ea) = ω(Bm
aẽm) = Bm

aω(ẽm) = Bm
aω̃m.

Summarising, for v ∈ V , ω ∈ V ∗ and ẽa = Abaeb, we have:

va = Aabṽ
b ωa = Bb

aω̃b

ṽa = Ba
bv
b ω̃a = Abaωb

The result for tensors is a combination of the above, depending on the type of tensor.

c) Let T ∈ T pq V . Then:

T
a1...ap

b1...bq
= Aa1m1

· · ·AapmpBn1
b1
· · ·Bnq

bq
T̃
m1...mp

n1...nq ,

i.e. the upstair indices transform like vector indices, and the downstair indices trans-
form like covector indices.

8.4 Determinants

In your previous course on linear algebra, you may have met the determinant of a square
matrix as a number calculated by applying a mysterious rule. Using the mysterious rule,
you may have shown, with a lot of work, that for example, if we exchange two rows or two
columns, the determinant changes sign. But, as we have seen, matrices are the result of
pure convention. Hence, one more polemic remark is in order.

Remark 8.27. Recall that, if φ ∈ T 1
1 V , then we can arrange the components φab in matrix

form:

φ = φab ea ⊗ f b ! φ =̂


φ1

1 φ
1
2 · · · φ1

d

φ2
1 φ

2
2 · · · φ2

d
...

...
. . .

...
φd1 φ

d
2 · · · φdd


Similarly, if we have g ∈ T 0

2 V , its components are gab := g(ea, eb) and we can write

g = gab f
a ⊗ f b ! g =̂


g11 g12 · · · g1d

g21 g22 · · · g2d
...

...
. . .

...
gd1 gd2 · · · gdd


Needless to say that these two objects could not be more different if they tried. Indeed

• φ is an endomorphism of V ; the first index in φab transforms like a vector index, while
the second index transforms like a covector index;

• g is a bilinear form on V ; both indices in gab transform like covector indices.
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In linear algebra, you may have seen the two different transformation laws for these objects:

φ→ A−1φA and g → AT gA,

where A is the change of basis matrix. However, once we fix a basis, the matrix representa-
tions of these two objects are indistinguishable. It is then very tempting to think that what
we can do with a matrix, we can just as easily do with another matrix. For instance, if we
have a rule to calculate the determinant of a square matrix, we should be able to apply it
to both of the above matrices.

However, the notion of determinant is only defined for endomorphisms. The only way
to see this is to give a basis-independent definition, i.e. a definition that does not involve
the “components of a matrix”.

We will need some preliminary definitions.

Definition. Let M be a set. A permutation of M is a bijection M →M .

Definition. The symmetric group of order n, denoted Sn, is the set of permutations of
{1, . . . , n} under the operation of functional composition.

Definition. A transposition is a permutation which exchanges two elements, keeping all
other elements fixed.

Proposition 8.28. Every permutation π ∈ Sn can be written as a product (composition)
of transpositions in Sn.

While this decomposition is not unique, for each given π ∈ Sn, the number of transpo-
sitions in its decomposition is always either even or odd. Hence, we can define the sign (or
signature) of π ∈ Sn as:

sgn(π) :=

{
+1 if π is the product of an even number of transpositions

−1 if π is the product of an odd number of transpositions.

Definition. Let V be a d-dimensional vector space. An n-form on V is a (0, n)-tensor ω
that is totally antisymmetric, i.e.

∀π ∈ Sn : ω(v1, v2, . . . , vn) = sgn(π)ω(vπ(1), vπ(2), . . . , vπ(n)).

Note that a 0-form is a scalar, and a 1-form is a covector. A d-form is also called a
top form. There are several equivalent definitions of n-form. For instance, we have the
following.

Proposition 8.29. A (0, n)-tensor ω is an n-form if, and only if, ω(v1, . . . , vn) = 0 when-
ever {v1, . . . , vn} is linearly dependent.

While T 0
nV is certainly non-empty when n > d, the proposition immediately implies

that any n-form with n > d must be identically zero. This is because a collection of more
than d vectors from a d-dimensional vector space is necessarily linearly dependent.
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Proposition 8.30. Denote by ΛnV the vector space of n-forms on V . Then we have

dim ΛnV =

{(
d
n

)
if 1 ≤ n ≤ d

0 if n > d,

where
(
d
n

)
= d!

n!(d−n)! is the binomial coefficient, read as “d choose n”.

In particular, dim ΛdV = 1. This means that

∀ω, ω′ ∈ ΛdV : ∃ c ∈ K : ω = c ω′,

i.e. there is essentially only one top form on V , up to a scalar factor.

Definition. A choice of top form on V is called a choice of volume form on V . A vector
space with a chosen volume form is then called a vector space with volume.

This terminology is due to the next definition.

Definition. Let dimV = d and let ω ∈ ΛdV be a volume form on V . Given v1, . . . , vd ∈ V ,
the volume spanned by v1, . . . , vd is

vol(v1, . . . , vd) := ω(v1, . . . , vd).

Intuitively, the antisymmetry condition on ω makes sure that vol(v1, . . . , vd) is zero
whenever the set {v1, . . . , vd} is not linearly independent. Indeed, in that case v1, . . . , vd
could only span a (d − 1)-dimensional hypersurface in V at most, which should have 0

volume.

Remark 8.31. You may have rightfully thought that the notion of volume would require
some extra structure on V , such as a notion of length or angles, and hence an inner product.
But instead, we only need a top form.

We are finally ready to define the determinant.

Definition. Let V be a d-dimensional vector space and let φ ∈ End(V ) ∼=vec T
1
1 V . The

determinant of φ is

detφ :=
ω(φ(e1), . . . , φ(ed))

ω(e1, . . . , ed)

for some volume form ω ∈ ΛdV and some basis {e1, . . . , ed} of V .

The first thing we need to do is to check that this is well-defined. That detφ is
independent of the choice of ω is clear, since if ω, ω′ ∈ ΛdV , then there is a c ∈ K such that
ω = c ω′, and hence

ω(φ(e1), . . . , φ(ed))

ω(e1, . . . , ed)
= �
c ω′(φ(e1), . . . , φ(ed))

�c ω
′(e1, . . . , ed)

.

The independence from the choice of basis is more cumbersome to show, but it does hold,
and thus detφ is well-defined.
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Note that φ needs to be an endomorphism because we need to apply ω to φ(e1), . . . , φ(ed),
and thus φ needs to output a vector.

Of course, under the identification of φ as a matrix, this definition coincides with the
usual definition of determinant, and all your favourite results about determinants can be
derived from it.

Remark 8.32. In your linear algebra course, you may have shown the the determinant is
basis-independent as follows: if A denotes the change of basis matrix, then

det(A−1φA) = det(A−1) det(φ) det(A) = det(A−1A) det(φ) = det(φ)

since scalars commute, and det(A−1A) = det(I) = 1.
Recall that the transformation rule for a bilinear form g under a change of basis is

g → AT gA. The determinant of g then transforms as

det(AT gA) = det(AT ) det(g) det(A) = (detA)2 det(g)

i.e. it not invariant under a change of basis. It is not a well-defined object, and thus we
should not use it.

We will later meet quantities X that transform as

X → 1

(detA)2
X

under a change of basis, and hence they are also not well-defined. However, we obviously
have

det(g)X → �
���

�
(detA)2

���
��

(detA)2 det(g)X = det(g)X

so that the product det(g)X is a well-defined object. It seems that two wrongs make a
right!

In order to make this mathematically precise, we will have to introduce principal fibre
bundles. Using them, we will be able to give a bundle definition of tensor and of tensor
densities which are, loosely speaking, quantities that transform with powers of detA under
a change of basis.
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9 Differential structures: the pivotal concept of tangent vector spaces

9.1 Tangent spaces to a manifold

In this section, whenever we say “manifold”, we mean a (real) d-dimensional differentiable
manifold, unless we explicitly say otherwise. We will also suppress the differentiable struc-
ture in the notation.

Definition. Let M be a manifold. We define the infinite-dimensional vector space over R
with underlying set

C∞(M) := {f : M → R | f is smooth}

and operations defined pointwise, i.e. for any p ∈M ,

(f + g)(p) := f(p) + g(p)

(λf)(p) := λf(p).

A routine check shows that this is indeed a vector space. We can similarly define
C∞(U), with U an open subset of M .

Definition. A smooth curve on M is a smooth map γ : R→M , where R is understood as
a 1-dimensional manifold.

This definition also applies to smooth maps I →M for an open interval I ⊆ R.

Definition. Let γ : R→ M be a smooth curve through p ∈ M ; w.l.o.g. let γ(0) = p. The
directional derivative operator at p along γ is the linear map

Xγ,p : C∞(M)
∼−→ R

f 7→ (f ◦ γ)′(0),

where R is understood as a 1-dimensional vector space over the field R.

Note that f ◦ γ is a map R → R, hence we can calculate the usual derivative and
evaluate it at 0.

Remark 9.1. In differential geometry, Xγ,p is called the tangent vector to the curve γ at
the point p ∈ M . Intuitively, Xγ,p is the velocity γ at p. Consider the curve δ(t) := γ(2t),
which is the same curve parametrised twice as fast. We have, for any f ∈ C∞(M):

Xδ,p(f) = (f ◦ δ)′(0) = 2(f ◦ γ)′(0) = 2Xγ,p(f)

by using the chain rule. Hence Xγ,p scales like a velocity should.

Definition. Let M be a manifold and p ∈ M . The tangent space to M at p is the vector
space over R with underlying set

TpM := {Xγ,p | γ is a smooth curve through p},
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addition

⊕ : TpM × TpM → TpM

(Xγ,p, Xδ,p) 7→ Xγ,p ⊕Xδ,p,

and scalar multiplication

� : R× TpM → TpM

(λ,Xγ,p) 7→ λ�Xγ,p,

both defined pointwise, i.e. for any f ∈ C∞(M),

(Xγ,p ⊕Xδ,p)(f) := Xγ,p(f) +Xδ,p(f)

(λ�Xγ,p)(f) := λXγ,p(f).

Note that the outputs of these operations do not look like elements in TpM , because
they are not of the form Xσ,p for some curve σ. Hence, we need to show that the above
operations are, in fact, well-defined.

Proposition 9.2. Let Xγ,p, Xδ,p ∈ TpM and λ ∈ R. Then, we have Xγ,p ⊕ Xδ,p ∈ TpM
and λ�Xγ,p ∈ TpM .

Since the derivative is a local concept, it is only the behaviour of curves near p that
matters. In particular, if two curves γ and δ agree on a neighbourhood of p, then Xγ,p and
Xδ,p are the same element of TpM . Hence, we can work locally by using a chart on M .

Proof. Let (U, x) be a chart on M , with U a neighbourhood of p.

i) Define the curve
σ(t) := x−1((x ◦ γ)(t) + (x ◦ δ)(t)− x(p)).

Note that σ is smooth since it is constructed via addition and composition of smooth
maps and, moreover:

σ(0) = x−1(x(γ(0)) + x(δ(0))− x(p))

= x−1(x(p)) + x(p)− x(p))

= x−1(x(p))

= p.

Thus σ is a smooth curve through p. Let f ∈ C∞(U) be arbitrary. Then we have

Xσ,p(f) := (f ◦ σ)′(0)

= [f ◦ x−1 ◦ ((x ◦ γ) + (x ◦ δ)− x(p))]′(0)

where (f ◦x−1) : Rd → R and ((x◦γ)+(x◦δ)−x(p)) : R→ Rd, so by the multivariable
chain rule

= [∂a(f ◦ x−1)(x(p))] ((xa ◦ γ) + (xa ◦ δ)− xa(p))′(0)
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where xa, with 1 ≤ a ≤ d, are the component functions of x, and since the derivative
is linear, we get

= [∂a(f ◦ x−1)(x(p))] ((xa ◦ γ)′(0) + (xa ◦ δ)′(0))

= (f ◦ x−1 ◦ x ◦ γ)′(0) + (f ◦ x−1 ◦ x ◦ δ)′(0)

= (f ◦ γ)′(0) + (f ◦ δ)′(0)

=: (Xγ,p ⊕Xδ,p)(f).

Therefore Xγ,p ⊕Xδ,p = Xσ,p ∈ TpM .

ii) The second part is straightforward. Define σ(t) := γ(λt). This is again a smooth
curve through p and we have:

Xσ,p(f) := (f ◦ σ)′(0)

= f ′(σ(0))σ′(0)

= λf ′(γ(0)) γ′(0)

= λ(f ◦ γ)′(0)

:= (λ�Xγ,p)(f)

for any f ∈ C∞(U). Hence λ�Xγ,p = Xσ,p ∈ TpM .

Remark 9.3. We now give a slightly different (but equivalent) definition of TpM . Consider
the set of smooth curves

S = {γ : I →M | with I ⊆ R open, 0 ∈ I and γ(0) = p}

and define the equivalence relation ∼ on S

γ ∼ δ :⇔ (x ◦ γ)′(0) = (x ◦ δ)′(0)

for some (and hence every) chart (U, x) containing p. Then, we can define

TpM := S/∼ .

9.2 Algebras and derivations

Before we continue looking at properties of tangent spaces, we will have a short aside on
algebras and derivations.

Definition. An algebra over a field K is a quadruple (A,+, ·, •), where (A,+, ·) is a K-
vector space and • is a product on A, i.e. a (K-)bilinear map • : A×A→ A.

Example 9.4. Define a product on C∞(M) by

• : C∞(M)× C∞(M)→ C∞(M)

(f, g) 7→ f • g,

where f • g is defined pointwise. Then (C∞(M),+, ·, •) is an algebra over R.
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The usual qualifiers apply to algebras as well.

Definition. An algebra (A,+, ·, •) is said to be

i) associative if ∀ v, w, z ∈ A : v • (w • z) = (v • w) • z;

ii) unital if ∃1 ∈ A : ∀ v ∈ V : 1 • v = v • 1 = v;

iii) commutative or abelian if ∀ v, w ∈ A : v • w = w • v.

Example 9.5. Clearly, (C∞(M),+, ·, •) is an associative, unital, commutative algebra.

An important class of algebras are the so-called Lie algebras, in which the product v•w
is usually denoted [v, w].

Definition. A Lie algebra A is an algebra whose product [−,−], called Lie bracket , satisfies

i) antisymmetry: ∀ v ∈ A : [v, v] = 0;

ii) the Jacobi identity: ∀ v, w, z ∈ A : [v, [w, z]] + [w, [z, v]] + [z, [v, w]] = 0.

Note that the zeros above represent the additive identity element in A, not the zero scalar

The antisymmetry condition immediately implies [v, w] = −[w, v] for all v, w ∈ A,
hence a (non-trivial) Lie algebra cannot be unital.

Example 9.6. Let V be a vector space over K. Then (End(V ),+, ·, ◦) is an associative,
unital, non-commutative algebra over K. Define

[−,−] : End(V )× End(V )→ End(V )

(φ, ψ) 7→ [φ, ψ] := φ ◦ ψ − ψ ◦ φ.

It is instructive to check that (End(V ),+, ·, [−,−]) is a Lie algebra over K. In this case,
the Lie bracket is typically called the commutator .

In general, given an associative algebra (A,+, ·, •), if we define

[v, w] := v • w − w • v,

then (A,+, ·, [−,−]) is a Lie algebra.

Definition. Let A be an algebra. A derivation on A is a linear map D : A
∼−→ A satisfying

the Leibniz rule
D(v • w) = D(v) • w + v •D(w)

for all v, w ∈ A.

Remark 9.7. The definition of derivation can be extended to include maps A→ B, with suit-
able structures. The obvious first attempt would be to consider two algebras (A,+A, ·A, •A),
(B,+B, ·B, •B), and require D : A

∼−→ B to satisfy

D(v •A w) = D(v) •B w +B v •B D(w).

However, this is meaningless as it stands since •B : B ×B → B, but on the right hand side
•B acts on elements from A too. In order for this to work, B needs to be a equipped with
a product by elements of A, both from the left and from the right. The structure we are
looking for is called a bimodule over A, and we will meet this later on.
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Example 9.8. The usual derivative operator is a derivation on C∞(R), the algebra of smooth
real functions, since it is linear and satisfies the Leibniz rule.

The second derivative operator, however, is not a derivation on C∞(R), since it does
not satisfy the Leibniz rule. This shows that the composition of derivations need not be a
derivation.

Example 9.9. Consider again the Lie algebra (End(V ),+, ·, [−,−]) and fix ξ ∈ End(V ). If
we define

Dξ := [ξ,−] : End(V )
∼−→ End(V )

φ 7→ [ξ, φ],

then Dξ is a derivation on (End(V ),+, ·, [−,−]) since it is linear and

Dξ([φ, ψ]) := [ξ, [φ, ψ]]

= −[ψ, [ξ, φ]]− [φ, [ψ, ξ]] (by the Jacobi identity)

= [[ξ, φ], ψ] + [φ, [ξ, ψ]] (by antisymmetry)

=: [Dξ(φ), ψ] + [φ,Dξ(ψ)].

This construction works in general Lie algebras as well.

Example 9.10. We denote by DerK(A) the set of derivations on a K-algebra (A,+, ·, •).
This set can be endowed with a K-vector space structure by defining the operations point-
wise but, by a previous example, it cannot be made into an algebra under composition of
derivations.

However, derivations are maps, so we can still compose them as maps and define

[−,−] : DerK(A)×DerK(A)→ DerK(A)

(D1, D2) 7→ [D1, D2] := D1 ◦D2 −D2 ◦D1.

The map [D1, D2] is (perhaps surprisingly) a derivation, since it is linear and

[D1, D2](v • w) := (D1 ◦D2 −D2 ◦D1)(v • w)

= D1(D2(v • w))−D2(D1(v • w))

= D1(D2(v) • w + v •D2(w))−D2(D1(v) • w + v •D1(w))

= D1(D2(v) • w) +D1(v •D2(w))−D2(D1(v) • w)−D2(v •D1(w))

= D1(D2(v)) • w +((((
((((D2(v) •D1(w) +((((

((((D1(v) •D2(w) + v •D1(D2(w))

−D2(D1(v)) • w −(((((
(((D1(v) •D2(w)−(((((

(((D2(v) •D1(w)− v •D2(D1(w))

= (D1(D2(v))−D2(D1(v))) • w + v • (D1(D2(w))−D2(D1(w)))

= [D1, D2](v) • w + v • [D1, D2](w)

Then (DerK(A),+, ·, [−,−]) is a Lie algebra over K.

If we have a manifold, we can define the related notion of derivation on an open subset
at a point.
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Definition. Let M be a manifold and let p ∈ U ⊆ M , where U is open. A derivation on
U at p is an R-linear map D : C∞(U)

∼−→ R satisfying the Leibniz rule

D(fg) = D(f)g(p) + f(p)D(g).

We denote by Derp(U) the R-vector space of derivations on U at p, with operations defined
pointwise.

Example 9.11. The tangent vector Xγ,p is a derivation on U ⊆ M at p, where U is any
neighbourhood of p. In fact, our definition of the tangent space is equivalent to

TpM := Derp(U),

for some open U containing p. One can show that this does not depend on which neigh-
bourhood U of p we pick.

9.3 A basis for the tangent space

The following is a crucially important result about tangent spaces.

Theorem 9.12. Let M be a manifold and let p ∈M . Then

dimTpM = dimM.

Remark 9.13. Note carefully that, despite us using the same symbol, the two “dimensions”
appearing in the statement of the theorem are, at least on the surface, entirely unrelated.
Indeed, recall that dimM is defined in terms of charts (U, x), with x : U → x(U) ⊆ RdimM ,
while dimTpM = |B|, where B is a Hamel basis for the vector space TpM . The idea behind
the proof is to construct a basis of TpM from a chart on M .

Proof. W.l.o.g., let (U, x) be a chart centred at p, i.e. x(p) = 0 ∈ RdimM . Define (dimM)-
many curves γ(a) : R→ U through p by requiring (xb ◦ γ(a))(t) = δbat, i.e.

γ(a)(0) := p

γ(a)(t) := x−1 ◦ (0, . . . , 0, t, 0, . . . , 0)

where the t is in the ath position, with 1 ≤ a ≤ dimM . Let us calculate the action of the
tangent vector Xγ(a),p ∈ TpM on an arbitrary function f ∈ C∞(U):

Xγ(a),p(f) := (f ◦ γ(a))
′(0)

= (f ◦ idU ◦γ(a))
′(0)

= (f ◦ x−1 ◦ x ◦ γ(a))
′(0)

= [∂b(f ◦ x−1)(x(p))] (xb ◦ γ(a))
′(0)

= [∂b(f ◦ x−1)(x(p))] (δbat)
′(0)

= [∂b(f ◦ x−1)(x(p))] δba

= ∂a(f ◦ x−1)(x(p))
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We introduce a special notation for this tangent vector:(
∂

∂xa

)
p

:= Xγ(a),p,

where the x refers to the chart map. We now claim that

B =

{(
∂

∂xa

)
p

∈ TpM
∣∣∣ 1 ≤ a ≤ dimM

}
is a basis of TpM . First, we show that B spans TpM .

Let X ∈ TpM . Then, by definition, there exists some smooth curve σ through p such
that X = Xσ,p. For any f ∈ C∞(U), we have

X(f) = Xσ,p(f)

:= (f ◦ σ)′(0)

= (f ◦ x−1 ◦ x ◦ σ)′(0)

= [∂b(f ◦ x−1)(x(p))] (xb ◦ σ)′(0)

= (xb ◦ σ)′(0)

(
∂

∂xb

)
p

(f).

Since (xb ◦ σ)′(0) =: Xb ∈ R, we have:

X = Xb

(
∂

∂xb

)
p

,

i.e. any X ∈ TpM is a linear combination of elements from B.
To show linear independence, suppose that

λa
(

∂

∂xa

)
p

= 0,

for some scalars λa. Note that this is an operator equation, and the zero on the right hand
side is the zero operator 0 ∈ TpM .

Recall that, given the chart (U, x), the coordinate maps xb : U → R are smooth, i.e.
xb ∈ C∞(U). Thus, we can feed them into the left hand side to obtain

0 = λa
(

∂

∂xa

)
p

(xb)

= λa ∂a(x
b ◦ x−1)(x(p))

= λa ∂a(projb)(x(p))

= λaδba

= λb

i.e. λb = 0 for all 1 ≤ b ≤ dimM . So B is indeed a basis of TpM , and since by construction
|B| = dimM , the proof is complete.
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Remark 9.14. While it is possible to define infinite-dimensional manifolds, in this course we
will only consider finite-dimensional ones. Hence dimTpM = dimM will always be finite
in this course.

Remark 9.15. Note that the basis that we have constructed in the proof is not chart-
independent. Indeed, each different chart will induce a different tangent space basis, and
we distinguish between them by keeping the chart map in the notation for the basis elements.

This is not a cause of concern for our proof however, since every basis of a vector space
must have the same cardinality, and hence it suffices to find one basis to determine the
dimension.

Remark 9.16. While the symbol
(
∂
∂xa

)
p
has nothing to do with the idea of partial differen-

tiation with respect to the variable xa, it is notationally consistent with it, in the following
sense.

Let M = Rd, (U, x) = (Rd, idRd) and let
(
∂
∂xa

)
p
∈ TpRd. If f ∈ C∞(Rd), then(

∂

∂xa

)
p

(f) = ∂a(f ◦ x−1)(x(p)) = ∂af(p),

since x = x−1 = idRd . Moreover, we have proja = xa. Thus, we can think of x1, . . . , xd as
the independent variables of f , and we can then write(

∂

∂xa

)
p

(f) =
∂f

∂xa
(p).

Definition. Let X ∈ TpM be a tangent vector and let (U, x) be a chart containing p. If

X = Xa

(
∂

∂xa

)
p

,

then the real numbers X1, . . . , XdimM are called the components of X with respect to
the tangent space basis induced by the chart (U, x). The basis {

(
∂
∂xa

)
p
} is also called a

co-ordinate basis.

Proposition 9.17. Let X ∈ TpM and let (U, x) and (V, y) be two charts containing p.
Then we have (

∂

∂xa

)
p

= ∂a(y
b ◦ x−1)(x(p))

(
∂

∂yb

)
p

Proof. Assume w.l.o.g. that U = V . Since
(
∂
∂xa

)
p
∈ TpM and {

(
∂
∂xa

)
p
} forms a basis, we

must have (
∂

∂xa

)
p

= λb
(
∂

∂yb

)
p
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for some λb. Let us determine what the λb are by applying both sides of the equation to
the coordinate maps yc: (

∂

∂xa

)
p

(yc) = ∂a(y
c ◦ x−1)(x(p));

λb
(
∂

∂yb

)
p

(yc) = λb ∂b(y
c ◦ y−1)(y(p))

= λb ∂b(projc)(y(p))

= λb δcb

= λc.

Hence
λc = ∂a(y

c ◦ x−1)(x(p)).

Substituting this expression for λc gives the result.

Corollary 9.18. Let X ∈ TpM and let (U, x) and (V, y) be two charts containing p. Denote
by Xa and X̃a the coordinates of X with respect to the tangent bases induced by the two
charts, respectively. Then we have:

X̃a = ∂b(y
a ◦ x−1)(x(p))Xb.

Proof. Applying the previous result,

X = Xa

(
∂

∂xa

)
p

= Xa ∂a(y
b ◦ x−1)(x(p))

(
∂

∂yb

)
p

.

Hence, we read-off X̃b = ∂a(y
b ◦ x−1)(x(p))Xa.

Remark 9.19. By abusing notation, we can write the previous equations in a more familiar
form. Denote by yb the maps yb ◦ x−1 : x(U) ⊆ RdimM → R; these are real functions of
dimM independent real variables. Since here we are only interested in what happens at
the point p ∈ M , we can think of the maps x1, . . . , xdimM as the independent variables of
each of the yb.

This is a general fact: if {∗} is a singleton (we let ∗ denote its unique element) and
x : {∗} → A, y : A → B are maps, then y ◦ x is the same as the map y with independent
variable x. Intuitively, x just “chooses” an element of A.

Hence, we have yb = yb(x1, . . . , xdimM ) and we can write(
∂

∂xa

)
p

=
∂yb

∂xa
(x(p))

(
∂

∂yb

)
p

and X̃b =
∂yb

∂xa
(x(p))Xa,

which correspond to our earlier ea = Abaẽb and ṽ
b = Abav

a. The function y = y(x) expresses
the new co-ordinates in terms of the old ones, and Aba is the Jacobian matrix of this map,
evaluated at x(p). The inverse transformation, of course, is given by

Bb
a = (A−1)ba =

∂xb

∂ya
(y(p)).
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Remark 9.20. The formula for change of components of vectors under a change of chart
suggests yet another way to define the tangent space to M at p.

Let Ap : {(U, x) ∈ A | p ∈ U} be the set of charts onM containing p. A tangent vector
v at p is a map

v : Ap → RdimM

satisfying
v((V, y)) = Av((U, x))

where A is the Jacobian matrix of y ◦ x−1 : RdimM → RdimM at x(p). In components, we
have

[v((V, y))]b =
∂yb

∂xa
(x(p)) [v((U, x))]a.

The tangent space TpM is then defined to be the set of all tangent vectors at p, endowed
with the appropriate vector space structure.

What we have given above is the mathematically rigorous version of the definition of
vector typically found in physics textbooks, i.e. that a vector is a “set of numbers” va which,
under a change of coordinates y = y(x), transform as

ṽb =
∂yb

∂xa
va.

For a comparison of the different definitions of TpM that we have presented and a proof
of their equivalence, refer to Chapter 2 of Vector Analysis, by Klaus Jänich.
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10 Construction of the tangent bundle

10.1 Cotangent spaces and the differential

Since the tangent space is a vector space, we can do all the constructions we saw previously
in the abstract vector space setting.

Definition. Let M be a manifold and p ∈M . The cotangent space to M at p is

T ∗pM := (TpM)∗.

Since dimTpM is finite, we have TpM ∼=vec T
∗
pM . If {

(
∂
∂xa

)
p
} is the basis of TpM

induced by some chart (U, x), then the dual basis is denoted as {(dxa)p}. We have, by
definition

(dxa)p

((
∂

∂xb

)
p

)
= δab .

Once we have the cotangent space, we can define the tensor spaces.

Definition. Let M be a manifold and p ∈M . The tensor space (T rs )pM is defined as

(T rs )pM := T rs (TpM) = TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r copies

⊗T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
s copies

.

Definition. Let M and N be manifolds and let φ : M → N be smooth. The differential
(or derivative) of φ at p ∈M is the linear map

dpφ : TpM
∼−→ Tφ(p)N

X 7→ dpφ (X)

where dpφ (X) is the tangent vector to N at φ(p)

dpφ (X) : C∞(N)
∼−→ R

g 7→ (dpφ (X))(g) := X(g ◦ φ).

If this definition looks confusing, it is worth it to pause and think about what it is
saying. Intuitively, if φ takes us fromM to N , then dpφ takes us from TpM to Tφ(p)N . The
way in which it does so, is the following.

M N C∞(M) C∞(N)

R R

φ

g◦φ
g X

−◦φ

dpφ (X)

Given X ∈ TpM , we want to construct dpφ (X) ∈ Tφ(p)N , i.e. a derivation on N at f(p).
Derivations act on functions. So, given g : N → R, we want to construct a real number
by using φ and X. There is really only one way to do is. If we precompose g with φ, we
obtain g ◦ φ : M → R, which is an element of C∞(M). We can then happily apply X to
this function to obtain a real number. You should check that dpφ (X) is indeed a tangent
vector to N .
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Remark 10.1. Note that, to be careful, we should replace C∞(M) and C∞(N) above with
C∞(U) and C∞(V ), where U ⊆M and V ⊆ N are open and contain p and φ(p), respectively.

Example 10.2. If M = Rd and N = Rd′ , then the differential of f : Rd → Rd′ at p ∈ Rd

dpf : TpRd ∼=vec Rd → Tf(p)Rd
′ ∼=vec Rd

′

is none other than the Jacobian of f at p.

A special case of the differential is the gradient of a function in C∞(M).

Definition. Let M be a manifold and let f : M → R be smooth. The gradient of f at
p ∈M is the covector

dpf : TpM
∼−→ Tf(p)R ∼=vec R

X 7→ dpf(X) := X(f).

In fact, we can define the gradient operator at p ∈M as the R-linear map

dp : C∞(U)
∼−→ T ∗pM

f 7→ dpf,

with p ∈ U ⊆M .

Remark 10.3. Note that, by writing dpf(X) := X(f), we have committed a slight (but
nonetheless real) abuse of notation. Since dpf(X) ∈ Tf(p)R, it takes in a function and
return a real number, but X(f) is already a real number! This is due to the fact that we
have implicitly employed the isomorphism

ιd : TpRd → Rd

X 7→ (X(proj1), . . . , X(projd)),

which, when d = 1, reads

ι1 : TpR→ R
X 7→ X(idR).

In our case, we have

dpf(X) := X(− ◦ f) 7→ X(idR ◦f) = X(f).

This notwithstanding, the best way to think of dpf is as a covector, i.e. dpf takes in a
tangent vector X and returns the real number X(f), in a linear fashion.

Recall that if (U, x) is a chart onM , then the co-ordinate maps xa : U → x(U) ⊆ RdimM

are smooth functions on U . We can thus apply the gradient operator dp (with p ∈ U) to
each of them to obtain (dimM)-many elements of T ∗pM .

Proposition 10.4. Let (U, x) be a chart on M , with p ∈ U . The set B = {dpxa | 1 ≤ a ≤
dimM} forms a basis of T ∗pM .
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Proof. We already know that T ∗pM = dimM , since it is the dual space to TpM . As
|B| = dimM by construction, it suffices to show that it is linearly independent. Suppose
that

λa dpx
a = 0,

for some λa ∈ R. Applying the left hand side to the basis element
(
∂
∂xb

)
p
yields

λa dpx
a

((
∂

∂xb

)
p

)
= λa

(
∂

∂xb

)
p

(xa) (definition of dpx
a)

= λa ∂b(x
a ◦ x−1)(x(p)) (definition of

(
∂
∂xb

)
p
)

= λa ∂b(proja)(x(p))

= λa δ
a
b

= λb.

Therefore, B is linearly independent and hence a basis of T ∗pM . Moreover, since we have
shown that

dpx
a

((
∂

∂xb

)
p

)
= δab ,

this basis is, in fact, the dual basis to {
(
∂
∂xa

)
p
}.

Remark 10.5. Note a slight subtlety. Given a chart (U, x) and the induced basis {
(
∂
∂xa

)
p
}

of TpM , the dual basis to {
(
∂
∂xa

)
p
} exists simply by virtue of T ∗pM being the dual space to

TpM . What we have shown above is that the elements of this dual basis are given explicitly
by the gradients of the co-ordinate maps of (U, x). In our notation, we have

(dxa)p = dpx
a, 1 ≤ a ≤ dimM.

10.2 Push-forward and pull-back

The push-forward of a smooth map φ : M → N at p ∈ M is just another name for the
differential of φ at p. We give the definition again in order to establish the new notation.

Definition. Let φ : M → N be a smooth map between smooth manifolds. The push-
forward of φ at p ∈M is the linear map:

(φ∗)p : TpM
∼−→ Tφ(p)N

X 7→ (φ∗)p(X) := X(− ◦ φ).

If γ : R → M is a smooth curve on M and φ : M → N is smooth, then φ ◦ γ : R → N

is a smooth curve on N .

Proposition 10.6. Let φ : M → N be smooth. The tangent vector Xγ,p ∈ TpM is pushed
forward to the tangent vector Xφ◦γ,φ(p) ∈ Tφ(p)N , i.e.

(φ∗)p(Xγ,p) = Xφ◦γ,φ(p).

– 81 –



Proof. Let f ∈ C∞(V ), with (V, x) a chart on N and φ(p) ∈ V . By applying the definitions,
we have

(φ∗)p(Xγ,p)(f) = (Xγ,p)(f ◦ φ) (definition of (φ∗)p)

= ((f ◦ φ) ◦ γ)′(0) (definition of Xγ,p)

= (f ◦ (φ ◦ γ))′(0) (associativity of ◦)
= Xφ◦γ,φ(p)(f) (definition of Xφ◦γ,φ(p))

Since f was arbitrary, we have (φ∗)p(Xγ,p) = Xφ◦γ,φ(p).

Related to the push-forward, there is the notion of pull-back of a smooth map.

Definition. Let φ : M → N be a smooth map between smooth manifolds. The pull-back
of φ at p ∈M is the linear map:

(φ∗)p : T ∗φ(p)N
∼−→ T ∗pM

ω 7→ (φ∗)p(ω),

where (φ∗)p(ω) is defined as

(φ∗)p(ω) : TpM
∼−→ R

X 7→ ω((φ∗)p(X)),

In words, if ω is a covector on N , its pull-back (φ∗)p(ω) is a covector on M . It acts
on tangent vectors on M by first pushing them forward to tangent vectors on N , and then
applying ω to them to produce a real number.

Remark 10.7. If you don’t see it immediately, then you should spend some time proving
that all the maps that we have defined so far and claimed to be linear are, in fact, linear.

Remark 10.8. We have seen that, given a smooth φ : M → N , we can push a vector
X ∈ TpM forward to a vector (φ∗)p(X) ∈ Tφ(p)N , and pull a covector ω ∈ T ∗φ(p)N back to
a covector (φ∗)p(ω) ∈ T ∗pM .

C∞(M) C∞(N) TpM Tφ(p)N

R R

X

−◦φ

(φ∗)p(X)

(φ∗)p

(φ∗)p(ω)
ω

However, if φ : M → N is a diffeomorphism, then we can also pull a vector Y ∈ Tφ(p)N

back to a vector (φ∗)p(Y ) ∈ TpM , and push a covector η ∈ T ∗pM forward to a covector
(φ∗)p(η) ∈ T ∗φ(p)N , by using φ−1 as follows:

(φ∗)p(Y ) := ((φ−1)∗)φ(p)(Y )

(φ∗)p(η) := ((φ−1)∗)φ(p)(η).
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C∞(M) C∞(N) TpM Tφ(p)N

R R

−◦φ−1

(φ∗)p(Y )
Y η

((φ−1)∗)φ(p)

(φ∗)p(η)

This is only possible if φ is a diffeomorphism. In general, you should keep in mind that

Vectors are pushed forward,
covectors are pulled back.

Remark 10.9. Given a smooth map φ : M → N , if f ∈ C∞(N), then f ◦φ is often called the
pull-back of f along φ. Similarly, if γ is a curve on M , then φ◦γ is called the push-forward
of γ along φ. For example, we can say that

• the push-forward of a tangent vector acting on a function is the tangent vector acting
on the pull-back of the function;

• the push-forward of a tangent vector to a curve is the tangent vector to the push-
forward of the curve.

10.3 Immersions and embeddings

We will now consider the question of under which circumstances a smooth manifold can “sit”
in Rd, for some d ∈ N. There are, in fact, two notions of sitting inside another manifold,
called immersion and embedding.

Definition. A smooth map φ : M → N is said to be an immersion of M into N if the
derivative

dpφ ≡ (φ∗)p : TpM
∼−→ Tφ(p)N

is injective, for all p ∈M . The manifold M is said to be an immersed submanifold of N .

From the theory of linear algebra, we immediately deduce that, for φ : M → N to be an
immersion, we must have dimM ≤ dimN . A closely related notion is that of a submersion,
where we require each (φ∗)p to be surjective, and thus we must have dimM ≥ dimN .
However, we will not need this here.

Example 10.10. Consider the map φ : S1 → R2 whose image is reproduced below.

ϕ(p)
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The map φ is not injective, i.e. there are p, q ∈ S1, with p 6= q and φ(p) = φ(q). Of
course, this means that Tφ(p)R2 = Tφ(q)R2. However, the maps (φ∗)p and (φ∗)q are both
injective, with their images being represented by the blue and red arrows, respectively.
Hence, the map φ is immersion.

Definition. A smooth map φ : M → N is said to be a (smooth) embedding of M into N if

• φ : M → N is an immersion;

• M ∼=top φ(M) ⊆ N , where φ(M) carries the subset topology inherited from N .

The manifold M is said to be an embedded submanifold of N .

Remark 10.11. If a continuous map between topological spaces satisfies the second condi-
tion above, then it is called a topological embedding. Therefore, a smooth embedding is a
topological embedding which is also an immersion (as opposed to simply being a smooth
topological embedding).

In the early days of differential geometry there were two approaches to study manifolds.
One was the extrinsic view, within which manifolds are defined as special subsets of Rd,
and the other was the intrinsic view, which is the view that we have adopted here.

Whitney’s theorem, which we will state without proof, states that these two approaches
are, in fact, equivalent.

Theorem 10.12 (Whitney). Any smooth manifold M can be

• embedded in R2 dimM ;

• immersed in R2 dimM−1.

Example 10.13. The Klein bottle can be embedded in R4 but not in R3. It can, however,
be immersed in R3.

What we have presented above is referred to as the strong version of Whitney’s theorem.
There is a weak version as well, but there are also even stronger versions of this result, such
as the following.

Theorem 10.14. Any smooth manifold can be immersed in R2 dimM−a(dimM), where a(n)

is the number of 1s in a binary expansion of n ∈ N.

Example 10.15. If dimM = 3, then as

310 = (1× 21 + 1× 20)10 = 112,

we have a(dimM) = 2, and thus every 3-dimensional manifold can be immersed into R4.
Note that even the strong version of Whitney’s theorem only tells us that we can immerse
M into R5.
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10.4 The tangent bundle

We would like to define a vector field on a manifold M as a “smooth” map that assigns
to each p ∈ M a tangent vector in TpM . However, since this would then be a “map” to a
different space at each point, it is unclear how to define its smoothness.

The simplest solution is to merge all the tangent spaces into a unique set and equip it
with a smooth structure, so that we can then define a vector field as a smooth map between
smooth manifolds.

Definition. Given a smooth manifold M , the tangent bundle of M is the disjoint union of
all the tangent spaces to M , i.e.

TM :=
∐
p∈M

TpM,

equipped with the canonical projection map

π : TM →M

X 7→ p,

where p is the unique p ∈M such that X ∈ TpM .

We now need to equip TM with the structure of a smooth manifold. We can achieve
this by constructing a smooth atlas for TM from a smooth atlas on M , as follows.

Let AM be a smooth atlas on M and let (U, x) ∈ AM . If X ∈ preimπ(U) ⊆ TM , then
X ∈ Tπ(X)M , by definition of π. Moreover, since π(X) ∈ U , we can expand X in terms of
the basis induced by the chart (U, x):

X = Xa

(
∂

∂xa

)
π(X)

,

where X1, . . . , XdimM ∈ R. We can then define the map

ξ : preimπ(U)→ x(U)× RdimM ∼=set R2 dimM

X 7→ (x(π(X)), X1, . . . , XdimM ).

Assuming that TM is equipped with a suitable topology, for instance the initial topol-
ogy (i.e. the coarsest topology on TM that makes π continuous), we claim that the pair
(preimπ(U), ξ) is a chart on TM and

ATM := {(preimπ(U), ξ) | (U, x) ∈ AM}

is a smooth atlas on TM . Note that, from its definition, it is clear that ξ is a bijection. We
will not show that (preimπ(U), ξ) is a chart here, but we will show that ATM is a smooth
atlas.

Proposition 10.16. Any two charts (preimπ(U), ξ), (preimπ(Ũ), ξ̃) ∈ ATM are C∞-compatible.
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Proof. Let (U, x) and (Ũ , x̃) be the two charts on M giving rise to (preimπ(U), ξ) and
(preimπ(Ũ), ξ̃), respectively. We need to show that the map

ξ̃ ◦ ξ−1 : x(U ∩ Ũ)× RdimM → x̃(U ∩ Ũ)× RdimM

is smooth, as a map between open subsets of R2 dimM . Recall that such a map is smooth
if, and only if, it is smooth componentwise. On the first dimM components, ξ̃ ◦ ξ−1 acts as

x̃ ◦ x−1 : x(U ∩ Ũ)→ x̃(U ∩ Ũ)

x(p) 7→ x̃(p),

while on the remaining dimM components it acts as the change of vector components we
met previously, i.e.

Xa 7→ X̃a = ∂b(y
a ◦ x−1)(x(p))Xb.

Hence, we have

ξ̃ ◦ ξ−1 : x(U ∩ Ũ)× RdimM → x̃(U ∩ Ũ)× RdimM

(x(π(X)), X1, . . . , XdimM ) 7→ (x̃(π(X)), X̃1, . . . , X̃dimM ),

which is smooth in each component, and hence smooth.

The tangent bundle of a smooth manifold M is therefore itself a smooth manifold
of dimension 2 dimM , and the projection π : TM → M is smooth with respect to this
structure.

Similarly, one can construct the cotangent bundle T ∗M to M by defining

T ∗M :=
∐
p∈M

T ∗pM

and going through the above again, using the dual basis {(dxa)p} instead of {
(
∂
∂xa

)
p
}.
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11 Tensor space theory II: over a ring

11.1 Vector fields

Now that we have defined the tangent bundle, we are ready to define vector fields.

Definition. Let M be a smooth manifold, and let TM π−→ M be its tangent bundle. A
vector field onM is a smooth section of the tangent bundle, i.e. a smooth map σ : M → TM

such that π ◦ σ = idM .
TM

M

πσ

We denote the set of all vector fields on M by Γ(TM), i.e.

Γ(TM) := {σ : M → TM | σ is smooth and π ◦ σ = idM}.

This is, in fact, the standard notation for the set of all sections on a bundle.

Remark 11.1. An equivalent definition is that a vector field σ on M is a derivation on the
algebra C∞(M), i.e. an R-linear map

σ : C∞(M)
∼−→ C∞(M)

satisfying the Leibniz rule (with respect to pointwise multiplication on C∞(M))

σ(fg) = g σ(f) + f σ(g).

This definition is better suited for some purposes, and later on we will switch from one to
the other without making any notational distinction between them.

Example 11.2. Let (U, x) be a chart on M . For each 1 ≤ a ≤ dimM , the map

σ : U → TU

p 7→
(

∂

∂xa

)
p

is a vector field on the submanifold U . We can also think of this as a linear map

∂

∂xa
: C∞(U)

∼−→ C∞(U)

f 7→ ∂

∂xa
(f) = ∂a(f ◦ x−1) ◦ x.

By abuse of notation, one usually denotes the right hand side above simply as ∂af .

U R U R

x(U) ⊆ RdimM x(U) ⊆ RdimM

x

f

x

∂af

f◦x−1 ∂a(f◦x−1)
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Recall that, given a smooth map φ : M → N , the push-forward (φ∗)p is a linear map
that takes in a tangent vector in TpM and outputs a tangent vector in Tφ(p)N . Of course,
we have one such map for each p ∈M . We can collect them all into a single smooth map.

Definition. Let φ : M → N be smooth. The push-forward φ∗ is defined as

φ∗ : TM → TN

X 7→ (φ∗)π(X)(X).

Any vector X ∈ TM must belong to TpM for some p ∈ M , namely p = π(X). The
map φ∗ simply takes any vector X ∈ TM and applies the usual push-forward at the “right”
point, producing a vector in TN . One can similarly define φ∗ : T ∗N → T ∗M .

The ideal next step would be to try to construct a map Φ∗ : Γ(TM) → Γ(TN) that
allows us to push vector fields on M forward to vector fields on N . Given σ ∈ Γ(TM), we
would like to construct a Φ∗(σ) ∈ Γ(TN). This is not trivial, since Φ∗(σ) needs to be, in
particular, a smooth map N → TN . Note that the composition φ∗ ◦ σ is a map M → TN ,
and hence imφ∗◦σ(M) ⊆ TN . Thus, we can try to define Φ∗(σ) by mapping each p ∈ N
to some tangent vector in imφ∗◦σ(M). Unfortunately, there are at least two ways in which
this can go wrong.

1. The map φ may fail to be injective. Then, there would be two points p1, p2 ∈M such
that p1 6= p2 and φ(p1) = φ(p2) =: q ∈ N . Hence, we would have two tangent vectors
on N with base-point q, namely (φ∗ ◦ σ)(p1) and (φ∗ ◦ σ)(p2). These two need not be
equal, and if they are not then the map Φ∗(σ) is ill-defined at q.

2. The map φ may fail to be surjective. Then, there would be some q ∈ N such that
there is no X ∈ imφ∗◦σ(M) with π(X) = q (where π : TN → N). The map Φ∗(σ)

would then be undefined at q.

3. Even if the map φ is bijective, its inverse φ−1 may fail to be smooth. But then Φ∗(σ)

would not be guaranteed to be a smooth map.

Of course, everything becomes easier if φ : M → N is a diffeomorphism.

TM TN

M N

φ∗

σ

φ

Φ∗(σ)

If σ ∈ Γ(TM), we can define the push-forward Φ∗(σ) ∈ Γ(TN) as

Φ∗(σ) := φ∗ ◦ σ ◦ φ−1.

More generally, if φ : M → N is smooth and σ ∈ Γ(TM), τ ∈ Γ(TN), we can define
Φ∗(σ) = τ if σ and τ are φ-related, i.e. if they satisfy

τ ◦ φ = φ∗ ◦ σ.
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We can equip the set Γ(TM) with the following operations. The first is our, by now
familiar, pointwise addition:

⊕ : Γ(TM)× Γ(TM)→ Γ(TM)

(σ, τ) 7→ σ ⊕ τ,

where

σ ⊕ τ : M → Γ(TM)

p 7→ (σ ⊕ τ)(p) := σ(p) + τ(p).

Note that the + on the right hand side above is the addition in TpM . More interestingly,
we also define the following multiplication operation:

� : C∞(M)× Γ(TM)→ Γ(TM)

(f, σ) 7→ f � σ,

where

f � σ : M → Γ(TM)

p 7→ (f � σ)(p) := f(p)σ(p).

Note that since f ∈ C∞(M), we have f(p) ∈ R and hence the multiplication above is the
scalar multiplication on TpM .

If we consider the triple (C∞(M),+, •), where • is pointwise function multiplication as
defined in the section on algebras and derivations, then the triple (Γ(TM),⊕,�) satisfies

• (Γ(TM),⊕) is an abelian group, with 0 ∈ Γ(TM) being the section that maps each
p ∈M to the zero tangent vector in TpM ;

• Γ(TM) \ {0} satisfies

i) ∀ f ∈ C∞(M) : ∀σ, τ ∈ Γ(TM) \ {0} : f � (σ ⊕ τ) = (f � σ)⊕ (f � τ);

ii) ∀ f, g ∈ C∞(M) : ∀σ ∈ Γ(TM) \ {0} : (f + g)� σ = (f � σ)⊕ (g � σ);

iii) ∀ f, g ∈ C∞(M) : σ ∈ Γ(TM) \ {0} : (f • g)� σ = f � (g � σ);

iv) ∀σ ∈ Γ(TM) \ {0} : 1� σ = σ,

where 1 ∈ C∞(M) maps every p ∈M to 1 ∈ R.

These are precisely the axioms for a vector space! The only obstacle to saying that
Γ(TM) is a vector space over C∞(M) is that the triple (C∞(M),+, •) is not an algebraic
field, but only a ring. We could simply talk about “vector spaces over rings”, but vector
spaces over ring have wildly different properties than vector spaces over fields, so much so
that they have their own name: modules.
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Remark 11.3. Of course, we could have defined � simply as pointwise global scaling, using
the reals R instead of the real functions C∞(M). Then, since (R,+, ·) is an algebraic field,
we would then have the obvious R-vector space structure on Γ(TM). However, a basis for
this vector space is necessarily uncountably infinite, and hence it does not provide a very
useful decomposition for our vector fields.

Instead, the operation � that we have defined allows for local scaling, i.e. we can scale
a vector field by a different value at each point, and a much more useful decomposition of
vector fields within the module structure.

11.2 Rings and modules over a ring

Unlike mathematicians, most people who apply mathematics tend to consider rings and
modules somewhat esoteric objects, but they are not esoteric at all. As we have seen, they
arise naturally in the study of manifolds and their unusual properties, at least when com-
pared to fields and vector spaces, are of direct geometric relevance and make us understand
the subject better.

For your benefit, we first recall some basic facts about rings.

Definition. A ring is a triple (R,+, ·), where R is a set and +, · : R × R → R are maps
satisfying the following axioms

• (R,+) is an abelian group:

i) ∀ a, b, c ∈ R : (a+ b) + c = a+ (b+ c);

ii) ∃ 0 ∈ R : ∀ a ∈ R : a+ 0 = 0 + a = a;

iii) ∀ a ∈ R : ∃−a ∈ R : a+ (−a) = (−a) + a = 0;

iv) ∀ a, b ∈ R : a+ b = b+ a;

• the operation · is associative and distributes over addition:

v) ∀ a, b, c ∈ R : (a · b) · c = a · (b · c);

vi) ∀ a, b, c ∈ R : (a+ b) · c = a · c+ b · c;

vii) ∀ a, b, c ∈ R : a · (b+ c) = a · b+ a · c.

Note that since · is not required to be commutative, axioms vi and vii are both necessary.

Definition. A ring (R,+, ·) is said to be

• commutative if ∀ a, b ∈ R : a · b = b · a;

• unital if ∃ 1 ∈ R : ∀ a ∈ R : 1 · a = a · 1 = a;

• a division (or skew) ring if it is unital and

∀ a ∈ R \ {0} : ∃ a−1 ∈ R \ {0} : a · a−1 = a−1 · a = 1.
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In a unital ring, an element for which there exists a multiplicative inverse is said to
be a unit. The set of units of a ring R is denoted by R∗ (not to be confused with the
vector space dual) and forms a group under multiplication. Then, R is a division ring iff
R∗ = R \ {0}.

Example 11.4. The sets Z, Q, R, and C are all rings under the usual operations. They are
also all fields, except Z.

Example 11.5. Let M be a smooth manifold. Then

• (C∞(M),+, ·), where · is scalar multiplication (by a real number), is an R-vector
space. It is not a ring since · is not a map C∞(M)× C∞(M)→ C∞(M).

• (C∞(M),+, •), where • is pointwise multiplication of maps, is a commutative, unital
ring, but not a division ring and hence, not a field.

In general, if (A,+, ·, •) is an algebra, then (A,+, •) is a ring.

Definition. Let (R,+, ·) be a unital ring. A triple (M,⊕,�) is called an R-module if the
maps

⊕ : M ×M →M

� : R×M →M

satisfy the vector space axioms, i.e. (M,⊕) is an abelian group and for all r, s ∈ R and all
m,n ∈M , we have

i) r � (m⊕ n) = (r �m)⊕ (r � n);

ii) (r + s)�m = (r �m)⊕ (s�m);

iii) (r · s)�m = r � (s�m);

iv) 1�m = m.

Most definitions we had for vector spaces carry over unaltered to modules, including
that of a basis, i.e. a linearly independent spanning set.

Remark 11.6. Even though we will not need this, we note as an aside that what we have
defined above is a left R-module, since multiplication has only been defined (and hence
only makes sense) on the left. The definition of a right R-module is completely analogous.
Moreover, if R and S are two unital rings, then we can define M to be an R-S-bimodule
if it is a left R-module and a right S-module. The bimodule structure is precisely what is
needed to generalise the notion of derivation that we have met before.

Example 11.7. Any ring R is trivially a module over itself.

Example 11.8. The triple (Γ(TM),⊕,�) is a C∞(M)-module.

In the following, we will usually denote ⊕ by + and suppress the �, as we did with
vector spaces.
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11.3 Bases for modules

The key fact that sets modules apart from vector spaces is that, unlike a vector space, an
R-module need not have a basis, unless R is a division ring.

Theorem 11.9. If D is a division ring, then any D-module V admits a basis.

Corollary 11.10. Every vector space has a basis, since any field is also a division ring.

Before we delve into the proof, let us consider some geometric examples.

Example 11.11. a) Let M = R2 and consider v ∈ Γ(TR2). It is a fact from standard
vector analysis that any such v can be written uniquely as

v = v1e1 + v2e2

for some v1, v2 ∈ C∞(R2) and e1, e2 ∈ Γ(TR2). Hence, even though Γ(TR2) is a
C∞(R2)-module and C∞(R2) is not a division ring, it still has a basis. Note that the
coefficients in the linear expansion of v are functions.

This example shows that the converse to the above theorem is not true: if D is not a
division ring, then a D-module may or may not have a basis.

b) Let M = S2. A famous result in algebraic topology, known as the hairy ball theorem,
states that there is no non-vanishing smooth tangent vector field on even-dimensional
n-spheres. Hence, we can multiply any smooth vector field v ∈ Γ(TS2) by a function
f ∈ C∞(S2) which is zero everywhere except where v is, obtaining fv = 0 despite
f 6= 0 and v 6= 0. Therefore, there is no set of linearly independent vector fields on
S2, much less a basis.

The proof of the theorem requires the axiom of choice, in the equivalent form known
as Zorn’s lemma.

Lemma 11.12 (Zorn). A partially ordered set P whose every totally ordered subset T has
an upper bound in P contains a maximal element.

Of course, we now need to define the new terms that appear in the statement of Zorn’s
lemma.

Definition. A partially ordered set (poset for short) is a pair (P,≤) where P is a set and ≤
is a partial order on P , i.e. a relation on P satisfying

i) reflexivity: ∀ a ∈ P : a ≤ a;

ii) anti-symmetry: ∀ a, b ∈ P : (a ≤ b ∧ b ≤ a)⇒ a = b;

iii) transitivity: ∀ a, b, c ∈ P : (a ≤ b ∧ b ≤ c)⇒ a ≤ c.

In a partially ordered set, while every element is related to itself by reflexivity, two
distinct elements need not be related.
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Definition. A totally ordered set is a pair (P,≤) where P is a set and ≤ is a total order
on P , i.e. a relation on P satisfying

a) anti-symmetry: ∀ a, b ∈ P : (a ≤ b ∧ b ≤ a)⇒ a = b;

b) transitivity: ∀ a, b, c ∈ P : (a ≤ b ∧ b ≤ c)⇒ a ≤ c;

c) totality: ∀ a, b ∈ P : a ≤ b ∨ b ≤ a.

Note that a total order is a special case of a partial order since, by letting a = b in the
totality condition, we obtain reflexivity. In a totally ordered set, every pair of elements is
related.

Definition. Let (P,≤) be a partially ordered set and let T ⊆ P . An element u ∈ P is said
to be an upper bound for T if

∀ t ∈ T : t ≤ u.

Every single-element subset of a partially ordered set has at least one upper bound by
reflexivity. However, in general, a subset may not have any upper bound. For example, if
the subset contains an element which is not related to any other element.

Definition. Let (P,≤) be a partially ordered set. A maximal element of P is an element
m ∈ P such that

@ a ∈ P : m ≤ a

or, alternatively,
∀ a ∈ P : (m ≤ a)⇒ (m = a).

Note that this is not equivalent to

∀ a ∈ P : a ≤ m

unless (P,≤) is a totally ordered set.

We are now ready to prove the theorem.

Proof of Theorem 11.9. We will tackle this one step at a time.

a) Let S ⊆ V be a generating set of V , i.e.

∀ v ∈ V : ∃ e1, . . . , eN ∈ S : ∃ d1, . . . , dN ∈ D : v = daea.

A generating set always exists, as one may take S = V .

b) Define a partially ordered set (P,≤) by

P := {U ∈ P(S) | U is linearly independent}

and ≤ :=⊆, that is, we partial order by set-theoretic inclusion.
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c) Let T ⊆ P be any totally ordered subset of P . Then
⋃
T is an upper bound for T ,

and it is linearly independent (by the total ordering assumption). Hence
⋃
T ∈ P .

By Zorn’s lemma, P has a maximal element. Le B ∈ P be any such element. BY
construction, B is a maximal (with respect to inclusion) linearly independent subset
of the generating set S.

d) We now claim that S = spanD(B). Indeed, let v ∈ S \B. Then B∩{v} ∈ P(S). Since
B is maximal, the set B ∩ {v} is not linearly independent. Hence

∃ e1, . . . , eN ∈ B : ∃ d, d1, . . . , dN ∈ D : daea + dv = 0,

where the coefficients d, d1, . . . , dN are not all zero. In particular, d 6= 0, for if it
was, it would immediately follow that daea = 0 for some d1, . . . , dN , not all zero,
contradicting the linear independence of B.

Since D is a division ring and d 6= 0, there exists a multiplicative inverse for d. Then
we can multiply both sides of the above equation by d−1 ∈ D to obtain

v = (d−1 · da) ea.

Hence S = spanD(B).

e) We therefore have
V = spanD(S) = spanD(B)

and thus B is a basis of V .

We stress again that if D is not a division ring, then a D-module may, but need not,
have a basis.

11.4 Module constructions and applications

As for vector spaces, we can perform the usual constructions with modules as well.

Definition. The direct sum of two R-modules M and N is the R-module M ⊕N , which
has M ×N as its underlying set and operations (inherited from M and N) defined compo-
nentwise.

Note that while we have been using ⊕ to temporarily distinguish two “plus-like” oper-
ations in different spaces, the symbol ⊕ is the standard notation for the direct sum.

Definition. An R-module M is said to be

• finitely generated if it has a finite generating set;

• free is it has a basis;

• projective if it is a direct summand of a free R-module F , i.e.

M ⊕Q = F

for some R-module Q.
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Example 11.13. As we have seen, Γ(TR2) is free while Γ(TS2) is not.

Example 11.14. Clearly, every free module is also projective.

Definition. Let M and N be two (left) R-modules. A map f : M → N is said to be an
R-linear map, or an R-module homomorphism, if

∀ r ∈ R : ∀m1,m2 ∈M : f(rm1 +m2) = rf(m1) + f(m2),

where it should be clear which operations are in M and which in N .
A bijective module homomorphism is said to be a module isomorphism, and we write

M ∼=mod N if there exists a module isomorphism between them.

If M and N are right R-modules, then the linearity condition is written as

∀ r ∈ R : ∀m1,m2 ∈M : f(m1r +m2) = f(m1)r + f(m2).

Proposition 11.15. If a finitely generated module R-module F is free, and d ∈ N is the
cardinality of a finite basis, then

F ∼=mod= R⊕ · · · ⊕R︸ ︷︷ ︸
d copies

=: Rd.

One can show that if Rd ∼=mod R
d′ , then d = d′ and hence, the concept of dimension is

well-defined for finitely generated, free modules.

Theorem 11.16 (Serre, Swan, et al.). Let E be a vector fibre bundle over a smooth manifold
M . Then, the set Γ(E) of all smooth section of E over M is a finitely generated, projective
C∞(M)-module.

A vector fibre bundle is a fibre bundle in which every fibre is a vector space. An example
is the tangent bundle to a manifold.

Remark 11.17. An immediate consequence of the theorem is that, for any vector fibre bundle
E over M , there exists a C∞(M)-module Q such that the direct sum Γ(E) ⊕ Q is free. If
Q can be chosen to be the trivial module {0}, then Γ(E) is itself free, as it is the case with
Γ(TR2). In a sense, the module Q quantifies the failure of Γ(E) to have a basis.

Theorem 11.18. Let P,Q be finitely generated (projective) modules over a commutative
ring R. Then

HomR(P,Q) := {φ : P
∼−→ Q | φ is R-linear}

is again a finitely generated (projective) R-module, with operations defined pointwise.

The proof is exactly the same as with vector spaces. As an example, we can use this
to define the dual of a module. For instance

HomC∞(M)(Γ(TM), C∞(M)) =: Γ(TM)∗.

One can show that Γ(TM)∗ coincides with the smooth sections over the cotangent bundle
Γ(T ∗M), i.e. the covector fields. Recall that, just like a vector field, a covector field is a
smooth section of the cotangent bundle T ∗M , that is, a smooth map ω : M → T ∗M with
π ◦ ω = idM . Unlike what we had with vector fields, we can always define the pull-back of
a covector field along any smooth map between manifolds.
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Definition. Let φ : M → N be smooth and let ω ∈ Γ(T ∗N). We define the pull-back
Φ∗(ω) ∈ Γ(T ∗M) of ω as

Φ∗(ω) : M → T ∗M

p 7→ Φ∗(ω)(p),

where

Φ∗(ω)(p) : TpM
∼−→ R

X 7→ Φ∗(ω)(p)(X) := ω(φ(p))(φ∗(X)),

as in the following diagram

T ∗M T ∗N

M N

φ∗

Φ∗(ω)

φ

ω

We can, of course, generalise these ideas by constructing the (r, s) tensor bundle of M

T rsM :=
∐
p∈M

(T rs )pM

and hence define a type (r, s) tensor field on M to be an element of Γ(T rsM), i.e. a smooth
section of the tensor bundle. If φ : M → N is smooth, we can define the pull-back of
contravariant (i.e. type (0, q)) tensor fields by generalising the pull-back of covector fields.
If φ : M → N is a diffeomorphism, then we can define the pull-back of any smooth (p, q)

tensor field τ ∈ Γ(T rsN) as

Φ∗(τ)(p)(ω1, . . . , ωr, X1, . . . , Xs)

:= τ(φ(p))
(
(φ−1)∗(ω1), . . . , (φ−1)∗(ωr), φ∗(X1), . . . , φ∗(Xs)

)
,

with ωi ∈ T ∗pM and Xi ∈ TpM .
There is, however, an equivalent characterisation of tensor fields as genuine multilinear

maps. This is, in fact, the standard textbook definition.

Definition. Let M be a smooth manifold. A smooth (r, s) tensor field τ on M is a
C∞(M)-multilinear map

τ : Γ(T ∗M)× · · · × Γ(T ∗M)︸ ︷︷ ︸
r copies

×Γ(TM)× · · · × Γ(TM)︸ ︷︷ ︸
s copies

→ C∞(M).

The equivalence of this to the bundle definition is due to the pointwise nature of tensors.
For instance, a covector field ω ∈ Γ(T ∗M) can act on a vector field X ∈ Γ(TM) to yield a
smooth function ω(X) ∈ C∞(M) by

(ω(X))(p) := ω(p)(X(p)).
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Then, we see that for any f ∈ C∞(M), we have

(ω(fX))(p) = ω(p)(f(p)X(p)) = f(p)ω(p)(X(p)) =: (fω(X))(p)

and hence, the map ω : Γ(TM)
∼−→ C∞(M) is C∞(M)-linear.

Similarly, the set Γ(T rsM) of all (r, s) smooth tensor fields on M can be made into a
C∞(M)-module, with module operations defined pointwise.

We can also define the tensor product of tensor fields

⊗ : Γ(T pqM)× Γ(T rsM)→ Γ(T p+rq+sM)

(τ, σ) 7→ τ ⊗ σ

analogously to what we had with tensors on a vector space, i.e.

(τ ⊗ σ)(ω1, . . . , ωp, ωp+1, . . . , ωp+r, X1,. . . , Xq, Xq+1, . . . , Xq+s)

:= τ(ω1, . . . , ωp, X1,. . . , Xq)σ(ωp+1, . . . , ωp+r, Xq+1, . . . , Xq+s),

with ωi ∈ Γ(T ∗M) and Xi ∈ Γ(TM).
Therefore, we can think of tensor fields on M either as sections of some tensor bundle

on M , that is, as maps assigning to each p ∈M a tensor (R-multilinear map) on the vector
space TpM , or as a C∞(M)-multilinear map as above. We will always try to pick the most
useful or easier to understand, based on the context.
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12 Grassmann algebra and de Rham cohomology

12.1 Differential forms

Definition. Let M be a smooth manifold. A (differential) n-form on M is a (0, n) smooth
tensor field ω which is totally antisymmetric, i.e.

ω(X1, . . . , Xn) = sgn(π)ω(Xπ(1), . . . , Xπ(n)),

for any π ∈ Sn, with Xi ∈ Γ(TM).

Alternatively, we can define a differential form as a smooth section of the appropriate
bundle on M , i.e. as a map assigning to each p ∈M an n-form on the vector space TpM .

Example 12.1. a) A manifold M is said to be orientable if it admits an oriented atlas,
i.e. an atlas in which all chart transition maps, which are maps between open subsets
of RdimM , have a positive determinant.

If M is orientable, then there exists a nowhere vanishing top form (n = dimM) on
M providing the volume.

b) The electromagnetic field strength F is a differential 2-form built from the electric
and magnetic fields, which are also taken to be forms. We will define these later in
some detail.

c) In classical mechanics, if Q is a smooth manifold describing the possible system con-
figurations, then the phase space is T ∗Q. There exists a canonically defined 2-form
on T ∗Q known as a symplectic form, which we will define later.

If ω is an n-form, then n is said to be the degree of ω. We denote by Ωn(M) the
set of all differential n-forms on M , which then becomes a C∞(M)-module by defining the
addition and multiplication operations pointwise.

Example 12.2. Of course, we have Ω0(M) ≡ C∞(M) and Ω1(M) ≡ Γ(T 0
1M) ≡ Γ(T ∗M).

Similarly to the case of forms on vector spaces, we have Ωn(M) = {0} for n > dimM ,
and otherwise dim Ωn(M) =

(
dimM
n

)
, as a C∞(M)-module.

We can specialise the pull-back of tensors to differential forms.

Definition. Let φ : M → N be a smooth map and let ω ∈ Ωn(N). Then we define the
pull-back Φ∗(ω) ∈ Ωn(M) of ω as

Φ∗(ω) : M → T ∗M

p 7→ Φ∗(ω)(p),

where
Φ∗(ω)(p)(X1, . . . , Xn) := ω(φ(p))

(
φ∗(X1), . . . , φ∗(Xn)

)
,

for Xi ∈ TpM .
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The map Φ∗ : Ωn(N)→ Ωn(M) is R-linear, and its action on Ω0(M) is simply

Φ∗ : Ω0(M)→ Ω0(M)

f 7→ Φ∗(f) := f ◦ φ.

This works for any smooth map φ, and it leads to a slight modification of our mantra:

Vectors are pushed forward,
forms are pulled back.

The tensor product ⊗ does not interact well with forms, since the tensor product of two
forms is not necessarily a form. Hence, we define the following.

Definition. Let M be a smooth manifold. We define the wedge (or exterior) product of
forms as the map

∧ : Ωn(M)× Ωm(M)→ Ωn+m(M)

(ω, σ) 7→ ω ∧ σ,

where

(ω ∧ σ)(X1, . . . , Xn+m) :=
1

n!m!

∑
π∈Sn+m

sgn(π)(ω ⊗ σ)(Xπ(1), . . . , Xπ(n+m))

and X1, . . . , Xn+m ∈ Γ(TM). By convention, for any f, g ∈ Ω0(M) and ω ∈ Ωn(M), we set

f ∧ g := fg and f ∧ ω = ω ∧ f = fω.

Example 12.3. Suppose that ω, σ ∈ Ω1(M). Then, for any X,Y ∈ Γ(TM)

(ω ∧ σ)(X,Y ) = (ω ⊗ σ)(X,Y )− (ω ⊗ σ)(Y,X)

= (ω ⊗ σ)(X,Y )− ω(Y )σ(X)

= (ω ⊗ σ)(X,Y )− (σ ⊗ ω)(X,Y )

= (ω ⊗ σ − σ ⊗ ω)(X,Y ).

Hence
ω ∧ σ = ω ⊗ σ − σ ⊗ ω.

The wedge product is bilinear over C∞(M), that is

(fω1 + ω2) ∧ σ = f ω1 ∧ σ + ω2 ∧ σ,

for all f ∈ C∞(M), ω1, ω2 ∈ Ωn(M) and σ ∈ Ωm(M), and similarly for the second argument.

Remark 12.4. If (U, x) is a chart on M , then every n-form ω ∈ Ωn(U) can be expressed
locally on U as

ω = ωa1···an dxa1 ∧ · · · ∧ dxan ,

where ωa1···an ∈ C∞(U) and 1 ≤ a1 < · · · < an ≤ dimM . The dxai appearing above are
the covector fields (1-forms)

dxai : p 7→ dpx
ai .
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The pull-back distributes over the wedge product.

Theorem 12.5. Let φ : M → N be smooth, ω ∈ Ωn(N) and σ ∈ Ωm(N). Then, we have

Φ∗(ω ∧ σ) = Φ∗(ω) ∧ Φ∗(σ).

Proof. Let p ∈M and X1, . . . , Xn+m ∈ TpM . Then we have(
Φ∗(ω) ∧ Φ∗(σ)

)
(p)(X1, . . . , Xn+m)

=
1

n!m!

∑
π∈Sn+m

sgn(π)
(
Φ∗(ω)⊗ Φ∗(σ)

)
(p)(Xπ(1), . . . , Xπ(n+m))

=
1

n!m!

∑
π∈Sn+m

sgn(π)Φ∗(ω)(p)(Xπ(1), . . . , Xπ(n))

Φ∗(σ)(p)(Xπ(n+1), . . . , Xπ(n+m))

=
1

n!m!

∑
π∈Sn+m

sgn(π)ω(φ(p))
(
φ∗(Xπ(1)), . . . , φ∗(Xπ(n))

)
σ(φ(p))

(
φ∗(Xπ(n+1)), . . . , φ∗(Xπ(n+m))

)
=

1

n!m!

∑
π∈Sn+m

sgn(π)(ω ⊗ σ)(φ(p))
(
φ∗(Xπ(1)), . . . , φ∗(Xπ(n+m))

)
= (ω ∧ σ)(φ(p))

(
φ∗(X1), . . . , φ∗(Xn+m)

)
= Φ∗(ω ∧ σ)(p)(X1, . . . , Xn+m).

Since p ∈M was arbitrary, the statement follows.

12.2 The Grassmann algebra

Note that the wedge product takes two differential forms and produces a differential form
of a different type. It would be much nicer to have a space which is closed under the action
of ∧. In fact, such a space exists and it is called the Grassmann algebra of M .

Definition. Let M be a smooth manifold. Define the C∞(M)-module

Gr(M) ≡ Ω(M) :=
dimM⊕
n=0

Ωn(M).

The Grassmann algebra on M is the algebra (Ω(M),+, ·,∧), where

∧ : Ω(M)× Ω(M)→ Ω(M)

is the linear continuation of the previously defined ∧ : Ωn(M)× Ωm(M)→ Ωn+m(M).

Recall that the direct sum of modules has the Cartesian product of the modules as
underlying set and module operations defined componentwise. Also, note that by “algebra”
here we really mean “algebra over a module”.

Example 12.6. Let ψ = ω + σ, where ω ∈ Ω1(M) and σ ∈ Ω3(M). Of course, this “+” is
neither the addition on Ω1(M) nor the one on Ω3(M), but rather that on Ω(M) and, in
fact, ψ ∈ Ω(M).
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Let ϕ ∈ Ωn(M), for some n. Then

ϕ ∧ ψ = ϕ ∧ (ω + σ) = ϕ ∧ ω + ϕ ∧ σ,

where ϕ ∧ ω ∈ Ωn+1(M), ϕ ∧ σ ∈ Ωn+3(M), and ϕ ∧ ψ ∈ Ω(M).

Example 12.7. There is a lot of talk about Grassmann numbers, particularly in supersym-
metry. One often hears that these are “numbers that do not commute, but anticommute”.
Of course, objects cannot be commutative or anticommutative by themselves. These qual-
ifiers only apply to operations on the objects. In fact, the Grassmann numbers are just the
elements of a Grassmann algebra.

The following result is about the anticommutative behaviour of ∧.

Theorem 12.8. Let ω ∈ Ωn(M) and σ ∈ Ωm(M). Then

ω ∧ σ = (−1)nm σ ∧ ω.

We say that ∧ is graded commutative, that is, it satisfies a version of anticommutativity
which depends on the degrees of the forms.

Proof. First note that if ω, σ ∈ Ω1(M), then

ω ∧ σ = ω ⊗ σ − σ ⊗ ω = − σ ∧ ω.

Recall that is ω ∈ Ωn(M) and σ ∈ Ωm(M), then locally on a chart (U, x) we can write

ω = ωa1···andxa1 ∧ · · · ∧ dxan

σ = σb1···bmdxb1 ∧ · · · ∧ dxbm

with 1 ≤ a1 < · · · < an ≤ dimM and similarly for the bi. The coefficients ωa1···an and
σb1···bm are smooth functions in C∞(U). Since dxai , dxbj ∈ Ω1(M), we have

ω ∧ σ = ωa1···anσb1···bm dxa1 ∧ · · · ∧ dxan ∧ dxb1 ∧ · · · ∧ dxbm

= (−1)n ωa1···anσb1···bm dxb1 ∧ dxa1 ∧ · · · ∧ dxan ∧ dxb2 ∧ · · · ∧ dxbm

= (−1)2n ωa1···anσb1···bm dxb1 ∧ dxb2 ∧ dxa1 ∧ · · · ∧ dxan ∧ dxb3 ∧ · · · ∧ dxbm

...

= (−1)nm ωa1···anσb1···bm dxb1 ∧ · · · ∧ dxbm ∧ dxa1 ∧ · · · ∧ dxan

= (−1)nm σ ∧ ω

since we have swapped 1-forms nm-many times.

Remark 12.9. We should stress that this is only true when ω and σ are pure degree forms,
rather than linear combinations of forms of different degrees. Indeed, if ϕ,ψ ∈ Ω(M), a
formula like

ϕ ∧ ψ = · · ·ψ ∧ ϕ

does not make sense in principle, because the different parts of ϕ and ψ can have different
commutation behaviours.
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12.3 The exterior derivative

Recall the definition of the gradient operator at a point p ∈ M . We can extend that
definition to define the (R-linear) operator:

d: C∞(M)
∼−→ Γ(T ∗M)

f 7→ df

where, of course, df : p 7→ dpf . Alternatively, we can think of df as the R-linear map

df : Γ(TM)
∼−→ C∞(M)

X 7→ df(X) = X(f).

Remark 12.10. Locally on some chart (U, x) on M , the covector field (or 1-form) df can
be expressed as

df = λa dxa

for some smooth functions λi ∈ C∞(U). To determine what they are, we simply apply both
sides to the vector fields induced by the chart. We have

df

(
∂

∂xb

)
=

∂

∂xb
(f) = ∂bf

and
λa dxa

(
∂

∂xb

)
= λa

∂

∂xb
(xa) = λa δ

a
b = λb.

Hence, the local expression of df on (U, x) is

df = ∂af dxa.

Note that the operator d satisfies the Leibniz rule

d(fg) = g df + f dg.

We can also understand this as an operator that takes in 0-forms and outputs 1-forms

d: Ω0(M)
∼−→ Ω1(M).

This can then be extended to an operator which acts on any n-form. We will need the
following definition.

Definition. Let M be a smooth manifold and let X,Y ∈ Γ(TM). The commutator (or
Lie bracket) of X and Y is defined as

[X,Y ] : C∞(M)
∼−→ C∞(M)

f 7→ [X,Y ](f) := X(Y (f))− Y (X(f)),

where we are using the definition of vector fields as R-linear maps C∞(M)
∼−→ C∞(M).
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Definition. The exterior derivative on M is the R-linear operator

d: Ωn(M)
∼−→ Ωn+1(M)

ω 7→ dω

with dω being defined as

dω(X1, . . . , Xn+1) :=

n+1∑
i=1

(−1)i+1Xi

(
ω(X1, . . . , X̂i, . . . , Xn+1)

)
+
∑
i<j

(−1)i+j ω
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xn+1

)
,

where Xi ∈ Γ(TM) and the hat denotes omissions.

Remark 12.11. Note that the operator d is only well-defined when it acts on forms. In order
to define a derivative operator on general tensors we will need to add extra structure to our
differentiable manifold.

Example 12.12. In the case n = 1, the form dω ∈ Ω2(M) is given by

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Let us check that this is indeed a 2-form, i.e. an antisymmetric, C∞(M)-multilinear map

dω : Γ(TM)× Γ(TM)→ C∞(M).

By using the antisymmetry of the Lie bracket, we immediately get

dω(X,Y ) = −dω(Y,X).

Moreover, thanks to this identity, it suffices to check C∞(M)-linearity in the first argument
only. Additivity is easily checked

dω(X1 +X2, Y ) = (X1 +X2)(ω(Y ))− Y (ω(X1 +X2))− ω([X1 +X2, Y ])

= X1(ω(Y )) +X2(ω(Y ))− Y (ω(X1) + ω(X2))− ω([X1, Y ] + [X2, Y ])

= X1(ω(Y )) +X2(ω(Y ))− Y (ω(X1))− Y (ω(X2))− ω([X1, Y ])− ω([X2, Y ])

= dω(X1, Y ) + dω(X2, Y ).

For C∞(M)-scaling, first we calculate [fX, Y ]. Let g ∈ C∞(M). Then

[fX, Y ](g) = fX(Y (g))− Y (fX(g))

= fX(Y (g))− fY (X(g))− Y (f)X(g)

= f(X(Y (g))− Y (X(g)))− Y (f)X(g)

= f [X,Y ](g)− Y (f)X(g)

= (f [X,Y ]− Y (f)X)(g).
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Therefore
[fX, Y ] = f [X,Y ]− Y (f)X.

Hence, we can calculate

dω(fX, Y ) = fX(ω(Y ))− Y (ω(fX))− ω([fX, Y ])

= fX(ω(Y ))− Y (fω(X))− ω(f [X,Y ]− Y (f)X)

= fX(ω(Y ))− fY (ω(X))− Y (f)ω(X)− fω([X,Y ]) + ω(Y (f)X)

= fX(ω(Y ))− fY (ω(X))−���
���Y (f)ω(X)− fω([X,Y ]) +���

���Y (f)ω(X)

= f dω(X,Y ),

which is what we wanted.

The exterior derivative satisfies a graded version of the Leibniz rule with respect to the
wedge product.

Theorem 12.13. Let ω ∈ Ωn(M) and σ ∈ Ωm(M). Then

d(ω ∧ σ) = dω ∧ σ + (−1)n ω ∧ dσ.

Proof. We will work in local coordinates. Let (U, x) be a chart on M and write

ω = ωa1···andxa1 ∧ · · · ∧ dxan =: ωAdxA

σ = σb1···bmdxb1 ∧ · · · ∧ dxbm =: σBdxB.

Locally, the exterior derivative operator d acts as

dω = dωA ∧ dxA.

Hence

d(ω ∧ σ) = d(ωAσB dxA ∧ dxB)

= d(ωAσB) ∧ dxA ∧ dxB

= (σBdωA + ωAdσB) ∧ dxA ∧ dxB

= σBdωA ∧ dxA ∧ dxB + ωAdσB ∧ dxA ∧ dxB

= σBdωA ∧ dxA ∧ dxB + (−1)nωAdxA ∧ dσB ∧ dxB

= σBdω ∧ dxB + (−1)nωAdxA ∧ dσ

= dω ∧ σ + (−1)n ω ∧ dσ

since we have “anticommuted” the 1-form dσB through the n-form dxA, picking up n minus
signs in the process.

An important property of the exterior derivative is the following.

Theorem 12.14. Let φ : M → N be smooth. For any ω ∈ Ωn(N), we have

Φ∗(dω) = d(Φ∗(ω)).
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Proof (sketch). We first show that this holds for 0-forms (i.e. smooth functions).
Let f ∈ C∞(N), p ∈M and X ∈ TpM . Then

Φ∗(df)(p)(X) = df(φ(p))(φ∗(X)) (definition of Φ∗)

= φ∗(X)(f) (definition of df)

= X(f ◦ φ) (definition of φ∗)

= d(f ◦ φ)(p)(X) (definition of d(f ◦ φ))
= d(Φ∗(f))(p)(X) (definition of Φ∗),

so that we have Φ∗(df) = d(Φ∗(f)).
The general result follows from the linearity of Φ∗ and the fact that the pull-back

distributes over the wedge product.

Remark 12.15. Informally, we can write this result as Φ∗d = dΦ∗, and say that the exterior
derivative “commutes” with the pull-back.

However, you should bear in mind that the two d’s appearing in the statement are
two different operators. On the left hand side, it is d: Ωn(N) → Ωn+1(N), while it is
d: Ωn(M)→ Ωn+1(M) on the right hand side.

Remark 12.16. Of course, we could also combine the operators d into a single operator
acting on the Grassmann algebra on M

d: Ω(M)→ Ω(M)

by linear continuation.

Example 12.17. In the modern formulation of Maxwell’s electrodynamics, the electric and
magnetic fields E and B are taken to be a 1-form and a 2-form on R3, respectively:

E := Exdx+ Eydy + Ezdz

B := Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy.

The electromagnetic field strength F is then defined as the 2-form on R4

F := B + E ∧ dt.

In components, we can write
F = Fµν dxµ ∧ dxν ,

where (dx0, dx1,dx2,dx3) ≡ (dt,dx,dy,dz) and

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


The field strength satisfies the equation

dF = 0.
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This is called the homogeneous Maxwell’s equation and it is, in fact, equivalent to the two
homogeneous Maxwell’s (vectorial) equations

∇ ·B = 0

∇×E +
∂B

∂t
= 0.

In order to cast the remaining Maxwell’s equations into the language of differential forms,
we need a further operation on forms, called the Hodge star operator.

Recall from the standard theory of electrodynamics that the two equations above imply
the existence of the electric and vector potentials ϕ and A = (Ax, Ay, Az), satisfying

B = ∇×A

E = −∇ϕ− ∂A

∂t
.

Similarly, the equation dF = 0 on R4 implies the existence of an electromagnetic 4-potential
(or gauge potential) form A ∈ Ω1(R4) such that

F = dA.

Indeed, we can take
A := −ϕdt+Axdx+Aydy +Azdz.

Definition. Let M be a smooth manifold. A 2-form ω ∈ Ω2(M) is said to be a symplectic
form on M if dω = 0 and if it is non-degenerate, i.e.

(∀Y ∈ Γ(TM) : ω(X,Y ) = 0)⇒ X = 0.

A manifold equipped with a symplectic form is called a symplectic manifold.

Example 12.18. In the Hamiltonian formulation of classical mechanics one is especially
interested in the cotangent bundle T ∗Q of some configuration space Q. Similarly to what
we did when we introduced the tangent bundle, we can define (at least locally) a system of
coordinates on T ∗Q by

(q1, . . . , qdimQ, p1, . . . , pdimQ),

where the pi’s are the generalised momenta on Q and the qi’s are the generalised coordinates
on Q (recall that dimT ∗Q = 2 dimQ). We can then define a 1-form θ ∈ Ω1(T ∗Q) by

θ := pi dqi

called the symplectic potential. If we further define

ω := dθ ∈ Ω2(T ∗Q),

then we can calculate that
dω = d(dθ) = · · · = 0.

Moreover, ω is non-degenerate and hence it is a symplectic form on T ∗Q.
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12.4 de Rham cohomology

The last two examples suggest two possible implications. In the electrodynamics example,
we saw that

(dF = 0)⇒ (∃A : F = dA),

while in the Hamiltonian mechanics example we saw that

(∃ θ : ω = dθ)⇒ (dω = 0).

Definition. Let M be a smooth manifold and let ω ∈ Ωn(M). We say that ω is

• closed if dω = 0;

• exact if ∃σ ∈ Ωn−1(M) : ω = dσ.

The question of whether every closed form is exact and vice versa, i.e. whether the
implications

(dω = 0)⇔ (∃σ : ω = dσ)

hold in general, belongs to the branch of mathematics called cohomology theory, to which
we will now provide an introduction.

The answer for the ⇐ direction is affirmative thanks to the following result.

Theorem 12.19. Let M be a smooth manifold. The operator

d2 ≡ d ◦ d: Ωn(M)→ Ωn+2(M)

is identically zero, i.e. d2 = 0.

For the proof, we will need the following concepts.

Definition. Given an object which carries some indices, say Ta1,...,an , we define the anti-
symmetrization of Ta1,...,an as

T[a1···an] :=
1

n!

∑
π∈Sn

sgn(π)Tπ(a1)···π(an).

Similarly, the symmetrization of Ta1,...,an is defined as

T(a1···an) :=
1

n!

∑
π∈Sn

Tπ(a1)···π(an).

Some special cases are

T[ab] =
1

2
(Tab − Tba), T(ab) =

1

2
(Tab + Tba)

T[abc] =
1

6
(Tabc + Tbca + Tcab − Tbac − Tcba − Tacb)

T(abc) =
1

6
(Tabc + Tbca + Tcab + Tbac + Tcba + Tacb)
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Of course, we can (anti)symmetrize only some of the indices

T ab[cd]e =
1

2
(T abcde − T abdce).

It is easy to check that in a contraction (i.e. a sum), we have

Ta1···anS
a1···[ai···aj ]···an = Ta1···[ai···aj ]···anS

a1···an

and
Ta1···(ai···aj)···anS

a1···[ai···aj ]···an = 0.

Proof. This can be shown directly using the definition of d. Here, we will instead show it
by working in local coordinates.

Recall that, locally on a chart (U, x), we can write any form ω ∈ Ωn(M) as

ω = ωa1···andxa1 ∧ · · · ∧ dxan .

Then, we have

dω = dωa1···an ∧ dxa1 ∧ · · · ∧ dxan

= ∂bωa1···andxb ∧ dxa1 ∧ · · · ∧ dxan ,

and hence
d2ω = ∂c∂bωa1···andxc ∧ dxb ∧ dxa1 ∧ · · · ∧ dxan .

Since dxc ∧ dxb = −dxb ∧ dxc, we have

dxc ∧ dxb = dx[c ∧ dxb].

Moreover, by Schwarz’s theorem, we have ∂c∂bωa1···an = ∂b∂cωa1···an and hence

∂c∂bωa1···an = ∂(c∂b)ωa1···an .

Thus

d2ω = ∂c∂bωa1···andxc ∧ dxb ∧ dxa1 ∧ · · · ∧ dxan

= ∂(c∂b)ωa1···andx[c ∧ dxb] ∧ dxa1 ∧ · · · ∧ dxan

= 0.

Since this holds for any ω, we have d2 = 0.

Corollary 12.20. Every exact form is closed.

We can extend the action of d to the zero vector space 0 := {0} by mapping the zero
in 0 to the zero function in Ω0(M). In this way, we obtain the chain of R-linear maps

0
d−−→ Ω0(M)

d−−→ Ω1(M)
d−−→ · · · d−−→ Ωn(M)

d−−→ Ωn+1(M)
d−−→ · · · d−−→ ΩdimM (M)

d−−→ 0,
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where we now think of the spaces Ωn(M) as R-vector spaces. Recall from linear algebra
that, given a linear map φ : V →W , one can define the subspace of V

ker(φ) := {v ∈ V | φ(v) = 0},

called the kernel of φ, and the subspace of W

im(φ) := {φ(v) | v ∈ V },

called the image of φ.
Going back to our chain of maps, the equation d2 = 0 is equivalent to

im(d: Ωn(M)→ Ωn+1(M)) ⊆ ker(d: Ωn+1(M)→ Ωn+2(M))

for all 0 ≤ n ≤ dimM − 2. Moreover, we have

ω ∈ Ωn(M) is closed ⇔ ω ∈ ker(d: Ωn(M)→ Ωn+1(M))

ω ∈ Ωn(M) is exact ⇔ ω ∈ im(d: Ωn−1(M)→ Ωn(M)).

The traditional notation for the spaces on the right hand side above is

Zn := ker(d: Ωn(M)→ Ωn+1(M)),

Bn := im(d: Ωn−1(M)→ Ωn(M)),

so that Zn is the space of closed n-forms and Bn is the space of exact n-forms.
Our original question can be restated as: does Zn = Bn for all n? We have already

seen that d2 = 0 implies that Bn ⊆ Zn for all n (Bn is, in fact, a vector subspace of Zn).
Unfortunately the equality does not hold in general, but we do have the following result.

Lemma 12.21 (Poincaré). Let M ⊆ Rd be a simply connected domain. Then

Zn = Bn , ∀n > 0.

In the cases where Zn 6= Bn, we would like to quantify by how much the closed n-forms
fail to be exact. The answer is provided by the cohomology group.

Definition. Let M be a smooth manifold. The n-th de Rham cohomology group on M is
the quotient R-vector space

Hn(M) := Zn/Bn.

You can think of the above quotient as Zn/∼, where ∼ is the equivalence relation

ω ∼ σ :⇔ ω − σ ∈ Bn.

The answer to our question as it is addressed in cohomology theory is: every exact n-form
on M is also closed and vice versa if, only if,

Hn(M) ∼=vec 0.
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Of course, rather than an actual answer, this is yet another restatement of the question.
However, if we are able to determine the spaces Hn(M), then we do get an answer.

A crucial theorem by de Rham states (in more technical terms) that Hn(M) only
depends on the global topology ofM . In other words, the cohomology groups are topological
invariants. This is remarkable because Hn(M) is defined in terms of exterior derivatives,
which have everything to do with the local differentiable structure of M , and a given
topological space can be equipped with several inequivalent differentiable structures.

Example 12.22. Let M be any smooth manifold. We have

H0(M) ∼=vec R(# of connected components of M)

since the closed 0-forms are just the locally constant smooth functions on M . As an
immediate consequence, we have

H0(R) ∼=vec H
0(S1) ∼=vec R.

Example 12.23. By Poincaré lemma, we have

Hn(M) ∼=vec 0

for any simply connected M ⊆ Rd.
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13 Lie groups and their Lie algebras

Lie theory is a topic of the utmost importance in both physics and differential geometry.

13.1 Lie groups

Definition. A Lie group is a group (G, •), where G is a smooth manifold and the maps

µ : G×G→ G

(g1, g2) 7→ g1 • g2

and

i : G→ G

g 7→ g−1

are both smooth. Note that G×G inherits a smooth atlas from the smooth atlas of G.

Definition. The dimension of a Lie group (G, •) is the dimension of G as a manifold.

Example 13.1. a) Consider (Rn,+), where Rn is understood as a smooth n-dimensional
manifold. This is a commutative (or abelian) Lie group (since • is commutative),
often called the n-dimensional translation group.

b) Let S1 := {z ∈ C | |z| = 1} and let · be the usual multiplication of complex numbers.
Then (S1, ·) is a commutative Lie group usually denoted U(1).

c) Let GL(n,R) = {φ : Rn ∼−→ Rn | detφ 6= 0}. This set can be endowed with the
structure of a smooth n2-dimensional manifold, by noting that there is a bijection
between linear maps φ : Rn ∼−→ Rn and R2n. The condition detφ 6= 0 is a so-called
open condition, meaning that GL(n,R) can be identified with an open subset of R2n,
from which it then inherits a smooth structure.

Then, (GL(n,R), ◦) is a Lie group called the general linear group.

d) Let V be an n-dimensional R-vector space equipped with a pseudo inner product, i.e.
an bilinear map (−,−) : V × V → R satisfying

i) symmetry: ∀ v, w ∈ V : (v, w) = (w, v);

ii) non-degeneracy: (∀w ∈ V : (v, w) = 0)⇒ v = 0.

Ordinary inner products satisfy a stronger condition than non-degeneracy, called pos-
itive definiteness, which is ∀ v ∈ V : (v, v) ≥ 0 and (v, v) = 0⇒ v = 0.

Given a symmetric bilinear map (−,−) on V , there is always a basis {ea} of V such
that (ea, ea) = ±1 and zero otherwise. If we get p-many 1s and q-many −1s (with
p+ q = n, of course), then the pair (p, q) is called the signature of the map. Positive
definiteness is the requirement that the signature be (n, 0), although in relativity we
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require the signature to be (n− 1, 1). A theorem states that there are (up to isomor-
phism) only as many pseudo inner products on V as there are different signatures.

We can define the set

O(p, q) := {φ : V
∼−→ V | ∀ v, w ∈ V : (φ(v), φ(w)) = (v, w)}.

The pair (O(p, q), ◦) is a Lie group called the orthogonal group with respect to the
pseudo inner product (−,−). This is, in fact, a Lie subgroup of GL(p+ q,R). Some
notable examples are O(3, 1), which is known as the Lorentz group in relativity, and
O(3, 0), which is the 3-dimensional rotation group.

Definition. Let (G, •) and (H, ◦) be Lie groups. A map φ : G → H is Lie group homo-
morphism if it is a group homomorphism and a smooth map.

A Lie group isomorphism is a group homomorphism which is also a diffeomorphism.

13.2 The left translation map

To every element of a Lie group there is associated a special map. Note that everything we
will do here can be done equivalently by using right translation maps.

Definition. Let (G, •) be a Lie group and let g ∈ G. The map

`g : G→ G

h 7→ `g(h) := g • h ≡ gh

is called the left translation by g.

If there is no danger of confusion, we usually suppress the • notation.

Proposition 13.2. Let G be a Lie group. For any g ∈ G, the left translation map `g : G→
G is a diffeomorphism.

Proof. Let h, h′ ∈ G. Then, we have

`g(h) = `g(h
′) ⇔ gh = gh′ ⇔ h = h′.

Moreover, for any h ∈ G, we have g−1h ∈ G and

`g(g
−1h) = gg−1h = h.

Therefore, `g is a bijection on G. Note that

`g = µ(g,−)

and since µ : G×G→ G is smooth by definition, so is `g.
The inverse map is (`g)

−1 = `g−1 , since

`g−1 ◦ `g = `g ◦ `g−1 = idG .

Then, for the same reason as above with g replaced by g−1, the inverse map (`g)
−1 is also

smooth. Hence, the map `g is indeed a diffeomorphism.
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Note that, in general, `g is not an isomorphism of groups, i.e.

`g(hh
′) 6= `g(h) `g(h

′)

in general. However, as the final part of the previous proof suggests, we do have

`g ◦ `h = `gh

for all g, h ∈ G.
Since `g : G→ G is a diffeomorphism, we have a well-defined push-forward map

(Lg)∗ : Γ(TG)→ Γ(TG)

X 7→ (Lg)∗(X)

where

(Lg)∗(X) : G→ TG

h 7→ (Lg)∗(X)(h) := (`g)∗(X(g−1h)).

We can draw the diagram

TG TG

G G

(`g)∗

X

`g

(Lg)∗(X)

Note that this is exactly the same as our previous

Φ∗(σ) := φ∗ ◦ σ ◦ φ−1.

By introducing the notation X|h := X(h), so that X|h ∈ ThG, we can write

(Lg)∗(X)|h := (`g)∗(X|g−1h).

Alternatively, recalling that the map `g is a diffeomorphism and relabelling the elements of
G, we can write this as

(Lg)∗(X)|gh := (`g)∗(X|h).

A further reformulation comes from considering the vector field X ∈ Γ(TG) as an R-linear
map X : C∞(G)

∼−→ C∞(G). Then, for any f ∈ C∞(G)

(Lg)∗(X)(f) := X(f ◦ `g).

Proposition 13.3. Let G be a Lie group. For any g, h ∈ G, we have

(Lg)∗ ◦ (Lh)∗ = (Lgh)∗.
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Proof. Let f ∈ C∞(G). Then, we have(
(Lg)∗ ◦ (Lh)∗

)
(X)(f) = (Lg)∗

(
(Lh)∗(X)

)
(f)

= (Lh)∗(X)(f ◦ `g)
= X(f ◦ `g ◦ `h)

= X(f ◦ `gh)

=: (Lgh)∗(X)(f),

as we wanted to show.

The previous identity applies to the pointwise push-forward as well, i.e.(
(`g1)∗ ◦ (`g2)∗

)
(X|h) = (`g1g2)∗(X|h)

for any g1, g2, h ∈ G and X|h ∈ ThG.

13.3 The Lie algebra of a Lie group

In Lie theory, we are typically not interested in general vector fields, but rather on spe-
cial class of vector fields which are invariant under the induced push-forward of the left
translation maps `g.

Definition. Let G be a Lie group. A vector field X ∈ Γ(TG) is said to be left-invariant if

∀ g ∈ G : (Lg)∗(X) = X.

Equivalently, we can require this to hold pointwise

∀ g, h ∈ G : (`g)∗(X|h) = X|gh.

By recalling the last reformulation of the push-forward, we have that X ∈ Γ(TG) is
left-invariant if, and only if

∀ f ∈ C∞(G) : X(f ◦ `g) = X(f) ◦ `g.

We denote the set of all left-invariant vector fields on G as L(G). Of course,

L(G) ⊆ Γ(TG)

but, in fact, more is true. One can check that L(G) is closed under

+: L(G)× L(G)→ L(G)

· : C∞(G)× L(G)→ L(G),

only for the constant functions in C∞(G). Therefore, L(G) is not a C∞(G)-submodule of
Γ(TG), but it is an R-vector subspace of Γ(TG).

Recall that, up to now, we have refrained from thinking of Γ(TG) as an R-vector space
since it is infinite-dimensional and, even worse, a basis is in general uncountable. A priori,
this could be true for L(G) as well, but we will see that the situation is, in fact, much nicer
as L(G) will turn out to be a finite-dimensional vector space over R.
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Theorem 13.4. Let G be a Lie group with identity element e ∈ G. Then L(G) ∼=vec TeG.

Proof. We will construct a linear isomorphism j : TeG
∼−→ L(G). Define

j : TeG→ Γ(TG)

A 7→ j(A),

where

j(A) : G→ TG

g 7→ j(A)|g := (`g)∗(A).

i) First, we show that for any A ∈ TeG, j(A) is a smooth vector field on G. It suffices
to check that for any f ∈ C∞(G), we have j(A)(f) ∈ C∞(G). Indeed

(j(A)(f))(g) = j(A)|g(f)

:= (`g)∗(A)(f)

= A(f ◦ `g)
= (f ◦ `g ◦ γ)′(0),

where γ is a curve through e ∈ G whose tangent vector at e is A. The map

ϕ : R×G→ R
(t, g) 7→ ϕ(t, g) := (f ◦ `g ◦ γ)(t)

= f(gγ(t))

is a composition of smooth maps, hence it is smooth. Then

(j(A)(f))(g) = (∂1ϕ)(0, g)

depends smoothly on g and thus j(A)(f) ∈ C∞(G).

ii) Let g, h ∈ G. Then, for every A ∈ TeG, we have

(`g)∗(j(A)|h) := (`g)∗((`h)∗(A))

= (`gh)∗(A)

= j(A)|gh,

so j(A) ∈ L(G). Hence, the map j is really j : TeG→ L(G).

iii) Let A,B ∈ TeG and λ ∈ R. Then, for any g ∈ G

j(λA+B)|g = (`g)∗(λA+B)

= λ(`g)∗(A) + (`g)∗(B)

= λj(A)|g + j(B)|g,

since the push-forward is an R-linear map. Hence, we have j : TeG
∼−→ L(G).
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iv) Let A,B ∈ TeG. Then

j(A) = j(B)⇔ ∀ g ∈ G : j(A)|g = j(B)|g
⇒ j(A)|e = j(B)|e
⇔ (`e)∗(A) = (`e)∗(B)

⇔ A = B,

since (`e)∗ = idTG. Hence, the map j is injective.

v) Let X ∈ L(G). Define AX := X|e ∈ TeG. Then, we have

j(AX)|g = (`g)∗(A
X) = (`g)∗(X|e) = Xge = Xg,

since X is left-invariant. Hence X = j(AX) and thus j is surjective.

Therefore, j : TeG
∼−→ L(G) is indeed a linear isomorphism.

Corollary 13.5. The space L(G) is finite-dimensional and dimL(G) = dimG.

We will soon see that the identification of L(G) and TeG goes beyond the level of
linear isomorphism, as they are isomorphic as Lie algebras. Recall that a Lie algebra over
an algebraic field K is a vector space over K equipped with a Lie bracket [−,−], i.e. a
K-bilinear, antisymmetric map which satisfies the Jacobi identity.

Given X,Y ∈ Γ(TM), we defined their Lie bracket, or commutator, as

[X,Y ](f) := X(Y (f))− Y (X(f))

for any f ∈ C∞(M). You can check that indeed [X,Y ] ∈ Γ(TM), and that the bracket is
R-bilinear, antisymmetric and satisfies the Jacobi identity. Thus, (Γ(TM),+, ·, [−,−]) is
an infinite-dimensional Lie algebra over R. We suppress the + and · when they are clear
from the context. In the case of a manifold that is also a Lie group, we have the following.

Theorem 13.6. Let G be a Lie group. Then L(G) is a Lie subalgebra of Γ(TG).

Proof. A Lie subalgebra of a Lie algebra is simply a vector subspace which is closed under
the action of the Lie bracket. Therefore, we only need to check that

∀X,Y ∈ L(G) : [X,Y ] ∈ L(G).

Let X,Y ∈ L(G). For any g ∈ G and f ∈ C∞(G), we have

[X,Y ](f ◦ `g) := X(Y (f ◦ `g))− Y (X(f ◦ `g))
= X(Y (f) ◦ `g)− Y (X(f) ◦ `g)
= X(Y (f)) ◦ `g − Y (X(f)) ◦ `g
=
(
X(Y (f))− Y (X(f))

)
◦ `g

= [X,Y ](f) ◦ `g.

Hence, [X,Y ] is left-invariant.
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Definition. Let G be a Lie group. The associated Lie algebra of G is L(G).

Note L(G) is a rather complicated object, since its elements are vector fields, hence we
would like to work with TeG instead, whose elements are tangent vectors. Indeed, we can
use the bracket on L(G) to define a bracket on TeG such that they be isomorphic as Lie
algebras. First, let us define the isomorphism of Lie algebras.

Definition. Let (L1, [−,−]L1) and (L2, [−,−]L2) be Lie algebras over the same field. A
linear map φ : L1

∼−→ L2 is a Lie algebra homomorphism if

∀x, y ∈ L1 : φ([x, y]L1) = [φ(x), φ(y)]L2 .

If φ is bijective, then it is a Lie algebra isomorphism and we write L1
∼=Lie alg L2.

By using the bracket [−,−]L(G) on L(G) we can define, for any A,B ∈ TeG

[A,B]TeG := j−1
(
[j(A), j(B)]L(G)

)
,

where j−1(X) = X|e. Equipped with these brackets, we have

L(G) ∼=Lie alg TeG.
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14 Classification of Lie algebras and Dynkin diagrams

Given a Lie group, we have seen how we can construct a Lie algebra as the space of left-
invariant vector fields or, equivalently, tangent vectors at the identity. We will later explore
the opposite direction, i.e. given a Lie algebra, we will see how to construct a Lie group
whose associated Lie algebra is the one we started from.

However, here we will consider a question that is independent of where a Lie algebra
comes from, namely that of the classification of Lie algebras.

14.1 Lie algebras

While it is possible to classify Lie algebras more generally, we will only consider the classi-
fication of finite-dimensional complex Lie algebras, i.e. Lie algebras (L, [−,−]) where L is
a finite-dimensional C-vector space.

Example 14.1. Of course, any complex Lie group G (where G is a complex manifold) gives
rise to a complex Lie algebra.

If A,B are Lie subalgebras of a Lie algebra (L, [−,−]) over K, then

[A,B] := spanK
(
{[x, y] ∈ L | x ∈ A and y ∈ B}

)
is again a Lie subalgebra of L.

Definition. A Lie algebra L is said to be abelian if

∀x, y ∈ L : [x, y] = 0.

Equivalently, [L,L] = 0, where 0 denotes the trivial Lie algebra {0}.

Abelian Lie algebras are highly non-interesting as Lie algebras: since the bracket is
identically zero, it may as well not be there. Even from the classification point of view,
the vanishing of the bracket implies that, given any two abelian Lie algebras, every lin-
ear isomorphism between their underlying vector spaces is automatically a Lie algebra
isomorphism. Therefore, for each n ∈ N, there is (up to isomorphism) only one abelian
n-dimensional Lie algebra.

Definition. An ideal I of a Lie algebra L is a Lie subalgebra such that [I, L] ⊆ I, i.e.

∀x ∈ I : ∀ y ∈ L : [x, y] ∈ I.

The ideals 0 and L are called the trivial ideals of L.

Definition. A Lie algebra L is said to be

• simple if it is non-abelian and it contains no non-trivial ideals;

• semi-simple if it contains no non-trivial abelian ideals.

Remark 14.2. Note that any simple Lie algebra is also semi-simple. The requirement that
a simple Lie algebra be non-abelian is due to the 1-dimensional abelian Lie algebra, which
would otherwise be the only simple Lie algebra which is not semi-simple.
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Definition. Let L be a Lie algebra. The Lie subalgebra

L′ := [L,L]

is called the derived subalgebra of L.

We can form a sequence of Lie subalgebras

L ⊇ L′ ⊇ L′′ ⊇ · · · ⊇ L(n) ⊇ · · ·

called the derived series of L.

Definition. A Lie algebra L is solvable if there exists k ∈ N such that L(k) = 0.

Recall that the direct sum of vector spaces V ⊕W has V ×W as its underlying set and
operations defined componentwise.

Definition. Let L1 and L2 be Lie algebras. The direct sum L1 ⊕Lie L2 has L1 ⊕ L2 as its
underlying vector space and Lie bracket defined as

[x1 + x2, y1 + y2]L1⊕LieL2 := [x1, y1]L1 + [x2, y2]L2

for all x1, y1 ∈ L1 and x2, y2 ∈ L2. Alternatively, by identifying L1 and L2 with the
subspaces L1 ⊕ 0 and 0⊕ L2 of L1 ⊕ L2 respectively, we require

[L1, L2]L1⊕LieL2 = 0.

In the following, we will drop the “Lie” subscript and understand ⊕ to mean ⊕Lie whenever
the summands are Lie algebras.

There is a weaker notion than the direct sum, defined only for Lie algebras.

Definition. Let R and L be Lie algebras. The semi-direct sum R ⊕s L has R ⊕ L as its
underlying vector space and Lie bracket satisfying

[R,L]R⊕sL ⊆ R,

i.e. R is an ideal of R⊕s L.

We are now ready to state Levi’s decomposition theorem.

Theorem 14.3 (Levi). Any finite-dimensional complex Lie algebra L can be decomposed
as

L = R⊕s (L1 ⊕ · · · ⊕ Ln)

where R is a solvable Lie algebra and L1, . . . , Ln are simple Lie algebras.

As of today, no general classification of solvable Lie algebras is known, except for some
special cases (e.g. in low dimensions). In contrast, the finite dimensional, simple, complex
Lie algebras have been classified completely.

Proposition 14.4. A Lie algebra is semi-simple if, and only if, it can be expressed as a
direct sum of simple Lie algebras.

Hence, the simple Lie algebras are the basic building blocks from which one can build
any semi-simple Lie algebra. Then, by Levi’s theorem, the classification of simple Lie
algebras easily extends to a classification of all semi-simple Lie algebras.
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14.2 The adjoint map and the Killing form

Definition. Let L be a Lie algebra over k and let x ∈ L. The adjoint map with respect to
x is the K-linear map

adx : L
∼−→ L

y 7→ adx(y) := [x, y].

The linearity of adx follows from the linearity of the bracket in the second argument,
while the linearity in the first argument of the bracket implies that the map

ad: L
∼−→ End(L)

x 7→ ad(x) := adx .

itself is also linear. In fact, more is true. Recall that End(L) is a Lie algebra with bracket

[φ, ψ] := φ ◦ ψ − ψ ◦ φ.

Then, we have the following.

Proposition 14.5. The map ad: L
∼−→ End(L) is a Lie algebra homomorphism.

Proof. It remains to check that ad preserves the brackets. Let x, y, z ∈ L. Then

ad[x,y](z) := [[x, y], z] (definition of ad)

= −[[y, z], x]− [[z, x], y] (Jacobi’s identity)

= [x, [y, z]]− [y, [x, z]] (anti-symmetry)

= adx(ady(z))− ady(adx(z))

= (adx ◦ ady − ady ◦ adx)(z)

= [adx, ady](z).

Hence, we have ad([x, y]) = [ad(x), ad(y)].

Definition. Let L be a Lie algebra over K. The Killing form on L is the K-bilinear map

κ : L× L→ K

(x, y) 7→ κ(x, y) := tr(adx ◦ ady),

where tr is the usual trace on the vector space End(L).

Note that the Killing form is not a “form” in the sense that we defined previously. In
fact, since L is finite-dimensional, the trace is cyclic and thus κ is symmetric, i.e.

∀x, y ∈ L : κ(x, y) = κ(y, x).

An important property of κ is its associativity with respect to the bracket.
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Proposition 14.6. Let L be a Lie algebra. For any x, y, z ∈ L, we have

κ([x, y], z) = κ(x, [y, z]).

Proof. This follows easily from the fact that ad is a homomorphism.

κ([x, y], z) := tr(ad[x,y] ◦ adz)

= tr([adx, ady] ◦ adz)

= tr((adx ◦ ady − ady ◦ adx) ◦ adz)

= tr(adx ◦ ady ◦ adz)− tr(ady ◦ adx ◦ adz)

= tr(adx ◦ ady ◦ adz)− tr(adx ◦ adz ◦ ady)

= tr(adx ◦ (ady ◦ adz − adz ◦ ady))

= tr(adx ◦ [ady, adz])

= tr(adx ◦ ad[y,z])

=: κ(x, [y, z]),

where we used the cyclicity of the trace.

We can use κ to give a further equivalent characterisation of semi-simplicity.

Proposition 14.7 (Cartan’s criterion). A Lie algebra L is semi-simple if, and only if, the
Killing form κ is non-degenerate, i.e.

(∀ y ∈ L : κ(x, y) = 0)⇒ x = 0.

Hence, if L is semi-simple, then κ is a pseudo inner product on L. Recall the following
definition from linear algebra.

Definition. A linear map φ : V
∼−→ V is said to be symmetric with respect to the pseudo

inner product B(−,−) on V if

∀ v, w ∈ V : B(φ(v), w) = B(v, φ(w)).

If, instead, we have
∀ v, w ∈ V : B(φ(v), w) = −B(v, φ(w)),

then φ is said to be anti-symmetric with respect to B.

The associativity property of κ with respect to the bracket can be restated by saying
that, for any z ∈ L, the linear map adz is anti-symmetric with respect to κ, i.e.

∀x, y ∈ L : κ(adz(x), y) = −κ(x, adz(y)).

In order to do computations, it is useful to introduce a basis {Ei} on L.
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Definition. Let L be a Lie algebra over K and let {Ei} be a basis. Then, we have

[Ei, Ej ] = CkijEk

for some Ckij ∈ K. The numbers Ckij are called the structure constants of L with respect
to the basis {Ei}.

In terms of the structure constants, the anti-symmetry of the Lie bracket reads

Ckij = −Ckji

while the Jacobi identity becomes

CnimC
m
jk + CnjmC

m
ki + CnkmC

m
ij = 0.

We can now express both the adjoint maps and the Killing form in terms of components
with respect to a basis.

Proposition 14.8. Let L be a Lie algebra and let {Ei} be a basis. Then

i) (adEi)
k
j = Ckij

ii) κij = CmikC
k
jm

where Ckij are the structure constants of L with respect to {Ei}.

Proof. i) Denote by {εi} the dual basis to {Ei}. Then, we have

(adEi)
k
j := εk(adEi(Ej))

= εk([Ei, Ej ])

= εk(CmijEm)

= Cmijε
k(Em)

= Ckij ,

since εk(Em) = δkm.

ii) Recall from linear algebra that if V is finite-dimensional, for any φ ∈ End(V ) we have
tr(φ) = Φk

k, where Φ is the matrix representing the linear map in any basis. Also,
recall that the matrix representing φ ◦ ψ is the product ΦΨ. Using these, we have

κij := κ(Ei, Ej)

= tr(adEi ◦ adEj )

= (adEi ◦ adEj )
k
k

= (adEi)
m
k(adEj )

k
m

= CmikC
k
jm,

where we used the same notation for the linear maps and their matrices.
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14.3 The fundamental roots and the Weyl group

We will now focus on finite-dimensional semi-simple complex Lie algebras, whose classifi-
cation hinges on the existence of a special type of subalgebra.

Definition. Let L be a d-dimensional Lie algebra. A Cartan subalgebra H of L is a
maximal Lie subalgebra of L with the following property: there exists a basis {h1, . . . , hr}
of H which can be extended to a basis {h1, . . . , hr, e1, . . . , ed−r} of L such that e1, . . . , ed−r
are eigenvectors of ad(h) for any h ∈ H, i.e.

∀h ∈ H : ∃λα(h) ∈ C : ad(h)eα = λα(h)eα,

for each 1 ≤ α ≤ d− r.

The basis {h1, . . . , hr, e1, . . . , ed−r} is known as a Cartan-Weyl basis of L.

Theorem 14.9. Let L be a finite-dimensional semi-simple complex Lie algebra. Then

i) L possesses a Cartan subalgebra;

ii) all Cartan subalgebras of L have the same dimension, called the rank of L;

iii) any of Cartan subalgebra of L is abelian.

Note that we can think of the λα appearing above as a map λα : H → C. Moreover,
for any z ∈ C and h, h′ ∈ H, we have

λα(zh+ h′)eα = ad(zh+ h′)eα

= [zh+ h′, eα]

= z[h, eα] + [h′, eα]

= zλα(h)eα + λα(h′)eα

= (zλα(h) + λα(h′))eα,

Hence λα is a C-linear map λα : H
∼−→ C, and thus λα ∈ H∗.

Definition. The maps λ1, . . . , λd−r ∈ H∗ are called the roots of L. The collection

Φ := {λα | 1 ≤ α ≤ d− r} ⊆ H∗

is called the root set of L.

One can show that if λα were the zero map, then we would have eα ∈ H. Thus, we
must have 0 /∈ Φ. Note that a consequence of the anti-symmetry of each ad(h) with respect
to the Killing form κ is that

λ ∈ Φ ⇒ −λ ∈ Φ.

Hence Φ is not a linearly independent subset of H∗.

Definition. A set of fundamental roots Π := {π1, . . . , πf} is a subset Π ⊆ Φ such that
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a) Π is a linearly independent subset of H∗;

b) for each λ ∈ Φ, there exist n1, . . . , nf ∈ N and ε ∈ {+1,−1} such that

λ = ε

f∑
i=1

niπi.

We can write the last equation more concisely as λ ∈ spanε,N(Π). Observe that, for
any λ ∈ Φ, the coefficients of π1, . . . , πf in the expansion above always have the same sign.
Indeed, we have spanε,N(Π) 6= spanZ(Π).

Theorem 14.10. Let L be a finite-dimensional semi-simple complex Lie algebra. Then

i) a set Π ⊆ Φ of fundamental roots always exists;

ii) we have spanC(Π) = H∗, that is, Π is a basis of H∗.

Corollary 14.11. We have |Π| = r, where r is the rank of L.

Proof. Since Π is a basis, |Π| = dimH∗ = dimH = r.

We would now like to use κ to define a pseudo inner product on H∗. We know from
linear algebra that a pseudo inner product B(−,−) on a finite-dimensional vector space V
over K induces a linear isomorphism

i : V
∼−→ V ∗

v 7→ i(v) := B(v,−)

which can be used to define a pseudo inner product B∗(−,−) on V ∗ as

B∗ : V ∗ × V ∗ → K

(φ, ψ) 7→ B∗(φ, ψ) := B(i−1(φ), i−1(ψ)).

We would like to apply this to the restriction of κ to the Cartan subalgebra. However,
a pseudo inner product on a vector space is not necessarily a pseudo inner product on a
subspace, since the non-degeneracy condition may fail when considered on a subspace.

Proposition 14.12. The restriction of κ to H is a pseudo inner product on H.

Proof. Bilinearity and symmetry are automatically satisfied. It remains to show that κ is
non-degenerate on H.

i) Let {h1, . . . , hr, er+1, . . . , ed} be a Cartan-Weyl basis of L and let λα ∈ Φ. Then

λα(hj)κ(hi, eα) = κ(hi, λα(hj)eα)

= κ(hi, [hj , eα])

= κ([hi, hj ], eα)

= κ(0, eα)

= 0.
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Since λα 6= 0, there is some hj such that λα(hj) 6= 0 and hence

κ(hi, eα) = 0.

By linearity, we have κ(h, eα) = 0 for any h ∈ H and any eα.

ii) Let h ∈ H ⊆ L. Since κ is non-degenerate on L, we have(
∀x ∈ L : κ(h, x) = 0

)
⇒ h = 0.

Expand x ∈ L in the Cartan-Weyl basis as

x = h′ + e

where h′ := xihi and e := xαeα. Then, we have

κ(h, x) = κ(h, h′) + xακ(h, eα) = κ(h, h′).

Thus, the non-degeneracy condition reads(
∀h′ ∈ H : κ(h, h′) = 0

)
⇒ h = 0,

which is what we wanted.

We can now define

κ∗ : H∗ ×H∗ → C
(µ, ν) 7→ κ∗(µ, ν) := κ(i−1(µ), i−1(ν)),

where i : H ∼−→ H∗ is the linear isomorphism induced by κ.

Remark 14.13. If {hi} is a basis of H, the components of κ∗ with respect to the dual basis
satisfy

(κ∗)ijκjk = δik.

Hence, we can write
κ∗(µ, ν) = (κ∗)ijµiνj ,

where µi := µ(hi).

We now turn our attention to the real subalgebra H∗R := spanR(Π). Note that we have
the following chain of inclusions

Π ⊆ Φ ⊆ spanε,N(Π) ⊆ spanR(Π)︸ ︷︷ ︸
H∗R

⊆ spanC(Π)︸ ︷︷ ︸
H∗

.

The restriction of κ∗ to H∗R leads to a surprising result.

Theorem 14.14. i) For any α, β ∈ H∗R, we have κ∗(α, β) ∈ R.

ii) κ∗ : H∗R ×H∗R → R is an inner product on H∗R.
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This is indeed a surprise! Upon restriction to H∗R, instead of being weakened, the non-
degeneracy of κ∗ gets strengthened to positive definiteness. Now that we have a proper
real inner product, we can define some familiar notions from basic linear algebra, such as
lengths and angles.

Definition. Let α, β ∈ H∗R. Then, we define

i) the length of α as |α| :=
√
κ∗(α, α) ;

ii) the angle between α and β as ϕ := cos−1

(
κ∗(α, β)

|α||β|

)
.

We need one final ingredient for our classification result.

Definition. For any λ ∈ Φ ⊆ H∗R, define the linear map

sλ : H∗R
∼−→ H∗R

µ 7→ sλ(µ),

where
sλ(µ) := µ− 2

κ∗(λ, µ)

κ∗(λ, λ)
λ.

The map sλ is called a Weyl transformation and the set

W := {sλ | λ ∈ Φ}

is a group under composition of maps, called the Weyl group.

Theorem 14.15. i) The Weyl group W is generated by the fundamental roots in Π, in
the sense that for some 1 ≤ n ≤ r, with r = |Π|,

∀w ∈W : ∃π1, . . . , πn ∈ Π : w = sπ1 ◦ sπ2 ◦ · · · ◦ sπn ;

ii) Every root can be produced from a fundamental root by the action of W , i.e.

∀λ ∈ Φ : ∃π ∈ Π : ∃w ∈W : λ = w(π);

iii) The Weyl group permutes the roots, that is,

∀λ ∈ Φ : ∀w ∈W : w(λ) ∈ Φ.

14.4 Dynkin diagrams and the Cartan classification

Consider, for any πi, πj ∈ Π, the action of the Weyl transformation

sπi(πj) := πj − 2
κ∗(πi, πj)

κ∗(πi, πi)
πi.

Since sπi(πj) ∈ Φ and Φ ⊆ spanε,N(Π), for all 1 ≤ i 6= j ≤ r we must have

−2
κ∗(πi, πj)

κ∗(πi, πi)
∈ N.
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Definition. The Cartan matrix of a Lie algebra is the r × r matrix C with entries

Cij := 2
κ∗(πi, πj)

κ∗(πi, πi)
,

where the Cij should not be confused with the structure constants Ckij .

Theorem 14.16. To every simple finite-dimensional complex Lie algebra there corresponds
a unique Cartan matrix and vice versa (up to relabelling of the basis elements).

Of course, not every matrix can be a Cartan matrix. For instance, since Cii = 2 (no
summation implied), the diagonal entries of C are all equal to 2, while the off-diagonal
entries are either zero or negative. In general, Cij 6= Cji, so the Cartan matrix is not
symmetric, but if Cij = 0, then necessarily Cji = 0.

We have thus reduced the problem of classifying the simple finite-dimensional complex
Lie algebras to that of finding all the Cartan matrices. This can, in turn, be reduced to the
problem of determining all the inequivalent Dynkin diagrams.

Definition. Given a Cartan matrix C, the ij-th bond number is

nij := CijCji (no summation implied).

Note that we have

nij = 4
κ∗(πi, πj)

κ∗(πi, πi)

κ∗(πj , πi)

κ∗(πj , πj)

= 4

(
κ∗(πi, πj)

|πi||πj |

)2

= 4 cos2 ϕ,

where ϕ is the angle between πi and πj . For i 6= j, the angle ϕ is neither zero nor 180◦,
hence 0 ≤ cos2 ϕ < 1, and therefore

nij ∈ {0, 1, 2, 3}.

Since Cij ≤ 0 for i 6= j, the only possibilities are

Cij Cji nij

0 0 0
−1 −1 1
−1 −2 2
−1 −3 3

Note that while the Cartan matrices are not symmetric, swapping any pair of Cij and
Cji gives a Cartan matrix which represents the same Lie algebra as the original matrix,
with two elements from the Cartan-Weyl basis swapped. This is why we have not included
(−2,−1) and (−3,−1) in the table above.

If nij = 2 or 3, then the corresponding fundamental roots have different lengths, i.e.
either |πi| < |πj | or |πi| > |πj |. We also have the following result.
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Proposition 14.17. The roots of a simple Lie algebra have, at most, two distinct lengths.

The redundancy of the Cartan matrices highlighted above is nicely taken care of by
considering Dynkin diagrams.

Definition. A Dynkin diagram associated to a Cartan matrix is constructed as follows.

1. Draw a circle for every fundamental root in πi ∈ Π;

πi

2. Draw nij lines between the circles representing the roots πi and πj ;

nij = 0

πi πj

nij = 1

πi πj

nij = 2

πi πj

nij = 3

πi πj

3. If nij = 2 or 3, draw an arrow on the lines from the longer root to the shorter root.

|πi| > |πj | |πi| < |πj | |πi| > |πj | |πi| < |πj |

πi πj πi πj πi πj πi πj

Dynkin diagrams completely characterise any set of fundamental roots, from which we
can reconstruct the entire root set by using the Weyl transformations. The root set can
then be used to produce a Cartan-Weyl basis.

We are now finally ready to state the much awaited classification theorem.

Theorem 14.18 (Killing, Cartan). Any simple finite-dimensional complex Lie algebra can
be reconstructed from its set of fundamental roots Π, which only come in the following forms.

i) There are 4 infinite families

An n ≥ 1

Bn n ≥ 2

Cn n ≥ 3

Dn n ≥ 4
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where the restrictions on n ensure that we don’t get repeated diagrams (the diagram D2

is excluded since it is disconnected and does not correspond to a simple Lie algebra)

ii) five exceptional cases

E6

E7

E8

F4

G2

and no other. These are all the possible (connected) Dynkin diagrams.

At last, we have achieved a classification of all simple finite-dimensional complex Lie al-
gebras. The finite-dimensional semi-simple complex Lie algebras are direct sums of simple
Lie algebras, and correspond to disconnected Dynkin diagrams whose connected compo-
nents are the ones listed above.
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15 The Lie group SL(2,C) and its Lie algebra sl(2,C)

15.1 The structure of SL(2,C)

Recall the the Lie group structure is the combination of a number of simpler structures,
which we will now examine in detail for the special linear group of degree 2 over C, also
known as the relativistic spin group.

SL(2,C) as a set

We define the following subset of C4 := C× C× C× C

SL(2,C) :=

{(
a b

c d

)
∈ C4

∣∣∣ ad− bc = 1

}
,

where the array is just an alternative notation for a quadruple.

SL(2,C) as a group

We define an operation

• : SL(2,C)× SL(2,C)→ SL(2,C)

(

(
a b

c d

)
,

(
e f

g h

)
) 7→

(
a b

c d

)
•
(
e f

g h

)
,

where (
a b

c d

)
•
(
e f

g h

)
:=

(
ae+ bg af + bh

ce+ dg cf + dh

)
.

Formally, this operation is the same as matrix multiplication. We can check directly that
the result of applying • lands back in SL(2,C), or simply recall that the determinant of a
product is the product of the determinants. Moreover, the operation •

i) is associative (straightforward but tedious to check);

ii) has an identity element, namely
(

1 0

0 1

)
∈ SL(2,C);

iii) admits inverses: for each
(
a b

c d

)
∈ SL(2,C), we have

(
d −b
−c a

)
∈ SL(2,C) and

(
a b

c d

)
•
(
d −b
−c a

)
=

(
d −b
−c a

)
•
(
a b

c d

)
=

(
1 0

0 1

)
.

Hence, we have
(
a b

c d

)−1

=

(
d −b
−c a

)
.

Therefore, the pair (SL(2,C), •) is a (non-commutative) group.
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SL(2,C) as a topological space

Recall that if N is a subset of M and O is a topology on M , then we can equip N with the
subset topology inherited from M

O|N := {U ∩N | U ∈ O}.

We begin by establishing a topology on C as follows. Let

Br(z) := {y ∈ C | |z − y| < r}

be the open ball of radius r > 0 and centre z ∈ C.

Re

Im

z
r

C

Br(z)

Define OC implicitly by

U ∈ OC :⇔ ∀ z ∈ U : ∃ r > 0 : Br(z) ⊆ U.

Then, the pair (C,OC) is a topological space. In fact, we have

(C,OC) ∼=top (R2,Ostd).

We can then equip C4 with the product topology so that we can finally define

O := (OC)|SL(2,C),

so that the pair (SL(2,C),O) is a topological space. In fact, it is a connected topological
space, and we will need this property later on.

SL(2,C) as a topological manifold

Recall that a topological space (M,O) is a complex topological manifold if each point
p ∈ M has an open neighbourhood U(p) which is homeomorphic to an open subset of Cd.
Equivalently, there must exist a C0-atlas, i.e. a collection A of charts (Uα, xα), where the
Uα are open and cover M and each x is a homeomorphism onto a subset of Cd.

Let U be the set

U :=

{(
a b

c d

)
∈ SL(2,C)

∣∣∣ a 6= 0

}
and define the map

x : U → x(U) ⊆ C∗ × C× C(
a b

c d

)
7→ (a, b, c),
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where C∗ = C \ {0}. With a little work, one can show that U is an open subset of
(SL(2,C),O) and x is a homeomorphism with inverse

x−1 : x(U)→ U

(a, b, c) 7→
(
a b

c 1+bc
a

)
.

However, since SL(2,C) contains elements with a = 0, the chart (U, x) does not cover the
whole space, and hence we need at least one more chart. We thus define the set

V :=

{(
a b

c d

)
∈ SL(2,C)

∣∣∣ b 6= 0

}
and the map

y : V → x(V ) ⊆ C× C∗ × C(
a b

c d

)
7→ (a, b, d).

Similarly to the above, V is open and y is a homeomorphism with inverse

y−1 : x(V )→ V

(a, b, d) 7→
(

a b
ad−1
b d

)
.

An element of SL(2,C) cannot have both a and b equal to zero, for otherwise ad−bc = 0 6= 1.
Hence Atop := {(U, x), (V, y)} is an atlas, and since every atlas is automatically a C0-atlas,
the triple (SL(2,C),O,Atop) is a 3-dimensional, complex, topological manifold.

SL(2,C) as a complex differentiable manifold

Recall that to obtain a C1-differentiable manifold from a topological manifold with atlas
A , we have to check that every transition map between charts in A is differentiable in the
usual sense.

In our case, we have the atlas Atop := {(U, x), (V, y)}. We evaluate

(y ◦ x−1)(a, b, c) = y(

(
a b

c 1+bc
a

)
) = (a, b, 1+bc

a ).

Hence we have the transition map

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V )

(a, b, c) 7→ (a, b, 1+bc
a ).

Similarly, we have

(x ◦ y−1)(a, b, d) = y(

(
a b

ad−1
b d

)
) = (a, b, ad−1

b ).
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Hence, the other transition map is

x ◦ y−1 : y(U ∩ V )→ x(U ∩ V )

(a, b, c) 7→ (a, b, ad−1
b ).

Since a 6= 0 and b 6= 0, the transition maps are complex differentiable (this is a good time
to review your complex analysis!).

Therefore, the atlas Atop is a differentiable atlas. By defining A to be the maximal dif-
ferentiable atlas containing Atop, we have that (SL(2,C),O,A ) is a 3-dimensional, complex
differentiable manifold.

SL(2,C) as a Lie group

We equipped SL(2,C) with both a group and a manifold structure. In order to obtain a
Lie group structure, we have to check that these two structures are compatible, that is, we
have to show that the two maps

µ : SL(2,C)× SL(2,C)→ SL(2,C)

(

(
a b

c d

)
,

(
e f

g h

)
) 7→

(
a b

c d

)
•
(
e f

g h

)
and

i : SL(2,C)→ SL(2,C)(
a b

c d

)
7→
(
a b

c d

)−1

are differentiable with respect to the differentiable structure on SL(2,C). For instance, for
the inverse map i, we have to show that the map y ◦ i ◦x−1 is differentiable in the usual for
any pair of charts (U, x), (V, y) ∈ A .

U ⊆ SL(2,C) V ⊆ SL(2,C)

x(U) ⊆ C3 y(V ) ⊆ C3

x

i

y

y◦i◦x−1

However, since SL(2,C) is connected, the differentiability of the transition maps in A

implies that if y ◦ i ◦ x−1 is differentiable for any two given charts, then it is differentiable
for all charts in A . Hence, we can simply let (U, x) and (V, y) be the two charts on SL(2,C)

defined above. Then, we have

(y ◦ i ◦ x−1)(a, b, c) = (y ◦ i)(
(
a b

c 1+bc
a

)
) = y(

(1+bc
a −b
−c a

)
) = (1+bc

a ,−b, a)

which is certainly complex differentiable as a map between open subsets of C3 (recall that
a 6= 0 on x(U)).
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Checking that µ is complex differentiable is slightly more involved, since we first have
to equip SL(2,C) × SL(2,C) with a suitable “product differentiable structure” and then
proceed as above. Once that is done, we can finally conclude that ((SL(2,C),O,A ), •) is
a 3-dimensional complex Lie group.

15.2 The Lie algebra of SL(2,C)

Recall that to every Lie group G, there is an associated Lie algebra L(G), where

L(G) := {X ∈ Γ(TG) | ∀ g, h ∈ G : (`g)∗(X|h) = Xgh},

which we then proved to be isomorphic to the Lie algebra TeG with Lie bracket

[A,B]TeG := j−1([j(A), j(B)]L(G))

induced by the Lie bracket on L(G) via the isomorphism j

j(A)|g := (`g)∗(A).

In the case of SL(2,C), the left translation map by
(
a b
c d

)
is

`( a b
c d

) : SL(2,C)→ SL(2,C)(
e f

g h

)
7→
(
a b

c d

)
•
(
e f

g h

)
By using the standard notation sl(2,C) ≡ L(SL(2,C)), we have

sl(2,C) ∼=Lie alg T( 1 0
0 1 ) SL(2,C).

We would now like to explicitly determine the Lie bracket on T( 1 0
0 1 ) SL(2,C), and hence

determine its structure constants.
Recall that if (U, x) is a chart on a manifold M and p ∈ U , then the chart (U, x)

induces a basis of the tangent space TpM . We shall use our previously defined chart (U, x)

on SL(2,C), where U := {
(
a b
c d

)
∈ SL(2,C) | a 6= 0} and

x : U → x(U) ⊆ C3(
a b

c d

)
7→ (a, b, c).

Note that the d appearing here is completely redundant, since the membership condition
of SL(2,C) forces d = 1+bc

a . However, we will keep writing the d to avoid having a fraction
in a matrix in a subscript.

The chart (U, x) contains ( 1 0
0 1 ) and hence we get an induced co-ordinate basis{(

∂

∂xi

)
( 1 0

0 1 )
∈ T( 1 0

0 1 ) SL(2,C)
∣∣∣ 1 ≤ i ≤ 3

}
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so that any A ∈ T( 1 0
0 1 ) SL(2,C) can be written as

A = α

(
∂

∂x1

)
( 1 0

0 1 )
+ β

(
∂

∂x2

)
( 1 0

0 1 )
+ γ

(
∂

∂x3

)
( 1 0

0 1 )
,

for some α, β, γ ∈ C. Since the Lie bracket is bilinear, its action on these basis vectors
uniquely extends to the whole of T( 1 0

0 1 ) SL(2,C) by linear continuation. Hence, we sim-

ply have to determine the action of the Lie bracket of sl(2,C) on the images under the
isomorphism j of these basis vectors.

Let us now determine the image of these co-ordinate induced basis elements under the
isomorphism j. The object

j

((
∂

∂xi

)
( 1 0

0 1 )

)
∈ sl(2,C)

is a left-invariant vector field on SL(2,C). It assigns to each point
(
a b
c d

)
∈ U ⊆ SL(2,C)

the tangent vector

j

((
∂

∂xi

)
( 1 0

0 1 )

)∣∣∣∣(
a b
c d

) :=
(
`( a b

c d

))
∗

(
∂

∂xi

)
( 1 0

0 1 )
∈ T( a b

c d

) SL(2,C).

This tangent vector is a C-linear map C∞(SL(2,C))
∼−→ C, where C∞(SL(2,C)) is the

C-vector space (in fact, the C-algebra) of smooth complex-valued functions on SL(2,C)

although, to be precise, since we are working in a chart we should only consider functions
defined on U . For (the restriction to U of) any f ∈ C∞(SL(2,C)) we have, explicitly,(

`( a b
c d

))
∗

(
∂

∂xi

)
( 1 0

0 1 )
(f) =

(
∂

∂xi

)
( 1 0

0 1 )

(
f ◦ `( a b

c d

))
= ∂i

(
f ◦ `( a b

c d

) ◦ x−1
)

(x ( 1 0
0 1 )),

where the argument of ∂i in the last line is a map x(U) ⊆ C3 → C, hence ∂i is simply the
operation of complex differentiation with respect to the i-th (out of the 3) complex variable
of the map f ◦ `( a b

c d

) ◦ x−1, which is then to be evaluated at x ( 1 0
0 1 ) ∈ C3. By inserting an

identity in the composition, we have

= ∂i

(
f ◦ idU ◦ `( a b

c d

) ◦ x−1
)

(x ( 1 0
0 1 ))

= ∂i

(
f ◦ (x−1 ◦ x) ◦ `( a b

c d

) ◦ x−1
)

(x ( 1 0
0 1 ))

= ∂i

(
(f ◦ x−1) ◦ (x ◦ `( a b

c d

) ◦ x−1)
)

(x ( 1 0
0 1 )),

where f ◦x−1 : x(U) ⊆ C3 → C and (x◦ `( a b
c d

) ◦x−1) : x(U) ⊆ C3 → x(U) ⊆ C3 and hence,

we can use the multi-dimensional chain rule to obtain

=
(
∂m(f ◦ x−1)

(
(x ◦ `( a b

c d

) ◦ x−1)(x ( 1 0
0 1 ))

))(
∂i(x

m ◦ `( a b
c d

) ◦ x−1)(x ( 1 0
0 1 ))

)
,
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with the summation going from m = 1 to m = 3. The first factor is simply

∂m(f ◦ x−1)
(
(x ◦ `( a b

c d

)) ( 1 0
0 1 )

)
= ∂m(f ◦ x−1)(x

(
a b
c d

)
)

=:

(
∂

∂xm

)
(
a b
c d

) (f).

To see what the second factor is, we first consider the map xm ◦ `( a b
c d

) ◦ x−1. This map

acts on the triple (e, f, g) ∈ x(U) as

(xm ◦ `( a b
c d

) ◦ x−1)(e, f, g) = (xm ◦ `( a b
c d

))

(
e f

g 1+fg
e

)
= xm(

(
a b

c d

)
•
(
e f

g 1+fg
e

)
)

= xm(

(
ae+ bg af + b(1+fg)

e

ce+ dg cf + d(1+fg)
e

)
),

and since xm := projm ◦ x, with m ∈ {1, 2, 3}, we have

(xm ◦ `( a b
c d

) ◦ x−1)(e, f, g) = projm(ae+ bg, af + b(1+fg)
e , ce+ dg),

the map projm simply picks the m-th component of the triple. We now have to apply ∂i to
this map, with i ∈ {1, 2, 3}, i.e. we have to differentiate with respect to each of the three
complex variables e, f , and g. We can write the result as

∂i(x
m ◦ `( a b

c d

) ◦ x−1)(e, f, g) = D(e, f, g)mi,

where m labels the rows and i the columns of the matrix

D(e, f, g) =

 a 0 b

− b(1+fg)
e2

a+ bg
e

bf
e

c 0 d

 .

Finally, by evaluating this at (e, f, g) = x ( 1 0
0 1 ) = (1, 0, 0), we obtain

∂i(x
m ◦ `( a b

c d

) ◦ x−1)(x ( 1 0
0 1 )) = Dm

i,

where, by recalling that d = 1+bc
a ,

D := D(1, 0, 0) =

 a 0 b

−b a 0

c 0 1+bc
a

 .

Putting the two factors back together yields(
`( a b

c d

))
∗

(
∂

∂xi

)
( 1 0

0 1 )
(f) = Dm

i

(
∂

∂xm

)
(
a b
c d

) (f).
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Since this holds for an arbitrary f ∈ C∞(SL(2,C)), we have

j

((
∂

∂xi

)
( 1 0

0 1 )

)∣∣∣∣(
a b
c d

) :=
(
`( a b

c d

))
∗

(
∂

∂xi

)
( 1 0

0 1 )
= Dm

i

(
∂

∂xm

)
(
a b
c d

) ,
and since the point

(
a b
c d

)
∈ U ⊆ SL(2,C) is also arbitrary, we have

j

((
∂

∂xi

)
( 1 0

0 1 )

)
= Dm

i

∂

∂xm
∈ sl(2,C),

where D is now the corresponding matrix of co-ordinate functions

D :=

 x1 0 x2

−x2 x1 0

x3 0 1+x2x3

x1

 .

Note that while the three vector fields
∂

∂xm
: SL(2,C)→ T SL(2,C)(

a b

c d

)
7→
(

∂

∂xm

)
(
a b
c d

)
are not individually left-invariant, their linear combination with coefficients Dm

i is indeed
left-invariant. Recall that these vector fields

i) are C-linear maps

∂

∂xm
: C∞(SL(2,C))

∼−→ C∞(SL(2,C))

f 7→ ∂m(f ◦ x−1) ◦ x;

ii) satisfy the Leibniz rule

∂

∂xm
(fg) = f

∂

∂xm
(g) + g

∂

∂xm
(f);

iii) act on the coordinate functions xi ∈ C∞(SL(2,C)) as

∂

∂xm
(xi) = ∂m(xi ◦ x−1) ◦ x = ∂m(proji ◦ x ◦ x−1) ◦ x = δim ◦ x = δim,

since the composition of a constant function with any composable function is just the
constant function.

Hence, we have an expansion of the images of the basis of T( 1 0
0 1 ) SL(2,C) under j:

j

((
∂

∂x1

)
( 1 0

0 1 )

)
= x1 ∂

∂x1
− x2 ∂

∂x2
+ x3 ∂

∂x3

j

((
∂

∂x2

)
( 1 0

0 1 )

)
= x1 ∂

∂x2

j

((
∂

∂x3

)
( 1 0

0 1 )

)
= x2 ∂

∂x1
+ 1+x2x3

x1
∂

∂x3
.
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We now have to calculate the bracket (in sl(2,C)) of every pair of these. We can also do
them all at once, which is a good exercise in index gymnastics. We have[

j

((
∂

∂xi

)
( 1 0

0 1 )

)
, j

((
∂

∂xk

)
( 1 0

0 1 )

)]
=

[
Dm

i

∂

∂xm
, Dn

k

∂

∂xn

]
.

Letting this act on an arbitrary f ∈ C∞(SL(2,C)), by definition[
Dm

i

∂

∂xm
, Dn

k

∂

∂xn

]
(f) := Dm

i

∂

∂xm

(
Dn

k

∂

∂xn
(f)
)
−Dn

k

∂

∂xn

(
Dm

i

∂

∂xm
(f)
)
.

The first term gives

Dm
i

∂

∂xm

(
Dn

k

∂

∂xn
(f)
)

= Dm
i

∂

∂xm
(Dn

k ∂n(f ◦ x−1) ◦ x)

= Dm
i

∂

∂xm
(Dn

k) (∂n(f ◦ x−1) ◦ x) +Dm
iD

n
k

∂

∂xm
(∂n(f ◦ x−1) ◦ x)

= Dm
i

∂

∂xm
(Dn

k) (∂n(f ◦ x−1) ◦ x) +Dm
iD

n
k ∂m(∂n(f ◦ x−1) ◦ x ◦ x−1) ◦ x

= Dm
i

∂

∂xm
(Dn

k) (∂n(f ◦ x−1) ◦ x) +Dm
iD

n
k ∂m∂n(f ◦ x−1) ◦ x.

Similarly, we have

Dn
k

∂

∂xn

(
Dm

i

∂

∂xm
(f)
)

= Dn
k

∂

∂xn
(Dm

i) (∂m(f ◦ x−1) ◦ x) +Dn
kD

m
i ∂n∂m(f ◦ x−1) ◦ x.

Hence, recalling that ∂m∂n = ∂n∂m by Schwarz’s theorem, we have[
Dm

i

∂

∂xm
, Dn

k

∂

∂xn

]
(f) = Dm

i

∂

∂xm
(Dn

k) (∂n(f ◦ x−1) ◦ x) +
((((

((((
(((

((
Dm

iD
n
k ∂m∂n(f ◦ x−1) ◦ x

−Dn
k

∂

∂xn
(Dm

i) (∂m(f ◦ x−1) ◦ x)−
((((

(((
((((

((
Dn

kD
m
i ∂n∂m(f ◦ x−1) ◦ x

=
(
Dm

i

∂

∂xm
(Dn

k)−Dm
k

∂

∂xm
(Dn

i)
)
∂n(f ◦ x−1) ◦ x

=
(
Dm

i

∂

∂xm
(Dn

k)−Dm
k

∂

∂xm
(Dn

i)
) ∂

∂xn
(f),

where we relabelled some dummy indices. Since the f ∈ C∞(SL(2,C)) was arbitrary,[
Dm

i

∂

∂xm
, Dn

k

∂

∂xn

]
=
(
Dm

i

∂

∂xm
(Dn

k)−Dm
k

∂

∂xm
(Dn

i)
) ∂

∂xn
.

We can now evaluate this explicitly. For i = 1 and k = 2, we have[
Dm

1

∂

∂xm
, Dn

2

∂

∂xn

]
=
(
���

���
��

Dm
1

∂

∂xm
(D1

2)−Dm
2

∂

∂xm
(D1

1)
) ∂

∂x1

+
(
Dm

1

∂

∂xm
(D2

2)−Dm
2

∂

∂xm
(D2

1)
) ∂

∂x2

+
(
���

���
��

Dm
1

∂

∂xm
(D3

2)−Dm
2

∂

∂xm
(D3

1)
) ∂

∂x3

= −D1
2

∂

∂x1
+ (D1

1 +D2
2)

∂

∂x2
−D3

2

∂

∂x3

= 2x1 ∂

∂x2
.
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Similarly, we compute[
Dm

1

∂

∂xm
, Dn

3

∂

∂xn

]
=
(
Dm

1

∂

∂xm
(D1

3)−Dm
3

∂

∂xm
(D1

1)
) ∂

∂x1

+
(
���

���
��

Dm
1

∂

∂xm
(D2

3)−Dm
3

∂

∂xm
(D2

1)
) ∂

∂x2

+
(
Dm

1

∂

∂xm
(D3

3)−Dm
3

∂

∂xm
(D3

1)
) ∂

∂x3

= −2x2 ∂

∂x1
− 2(1+x2x3

x1
)
∂

∂x3

and [
Dm

2

∂

∂xm
, Dn

3

∂

∂xn

]
=
(
Dm

2

∂

∂xm
(D1

3)−
���

���
��

Dm
3

∂

∂xm
(D1

2)
) ∂

∂x1

+
(
��

���
���

Dm
2

∂

∂xm
(D2

3)−Dm
3

∂

∂xm
(D2

2)
) ∂

∂x2

+
(
Dm

2

∂

∂xm
(D3

3)−
���

���
��

Dm
3

∂

∂xm
(D3

2)
) ∂

∂x3

= (D2
1 −D1

3)
∂

∂x1
+D2

3

∂

∂x2
−D3

2

∂

∂x3

= x1 ∂

∂x1
− x2 ∂

∂x2
+ x3 ∂

∂x3
,

where the differentiation rules that we have used come from the definition of the vector
field ∂

∂xm , the Leibniz rule, and the action on co-ordinate functions.
By applying j−1, which is just evaluation at the identity, to these vector fields, we

finally see that the induced Lie bracket on T( 1 0
0 1 ) SL(2,C) satisfies

[(
∂

∂x1

)
( 1 0

0 1 )
,

(
∂

∂x2

)
( 1 0

0 1 )

]
= 2

(
∂

∂x2

)
( 1 0

0 1 )[(
∂

∂x1

)
( 1 0

0 1 )
,

(
∂

∂x3

)
( 1 0

0 1 )

]
= −2

(
∂

∂x3

)
( 1 0

0 1 )[(
∂

∂x2

)
( 1 0

0 1 )
,

(
∂

∂x3

)
( 1 0

0 1 )

]
=

(
∂

∂x1

)
( 1 0

0 1 )
.

Hence, the structure constants of T( 1 0
0 1 ) SL(2,C) with respect to the co-ordinate basis are

C2
12 = 2, C3

13 = −2, C1
23 = 1,

with all other being either zero or related to these by anti-symmetry.
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16 Dynkin diagrams from Lie algebras, and vice versa

16.1 The simplicity of sl(2,C)

We have seen that the non-zero structure constants of T( 1 0
0 1 ) SL(2,C) are

C2
12 = 2, C3

13 = −2, C1
23 = 1,

plus those related by anti-symmetry.

Proposition 16.1. Two Lie algebras A and B are isomorphic if, and only if, there exists
a basis of A and a basis of B in which the structure constants of A and B are the same.

Since we have already proved that TeG ∼=Lie alg L(G) for any Lie group G, we can
deduce the existence of a basis {X1, X2, X2} of sl(2,C) with respect to which the structure
constants are those listed above. In other words, we have

[X1, X2] = 2X2,

[X1, X3] = −2X3,

[X2, X3] = X1.

In this basis, the Killing form of sl(2,C) has components

κij = CminC
n
jm,

with all indices ranging from 1 to 3. Explicitly, we have

κ11 = Cm1nC
n
1m

=���
��C1

1nC
n
11 + C2

1nC
n
12 + C3

1nC
n
13

= C2
12C

2
12 + C3

13C
3
13

= 8.

Since κ is symmetric, we only need to determine κij for i ≤ j. By writing the components
in a 3× 3 array, we find

[κij ] =

8 0 0

0 −8 0

0 0 8

 ,

which is just shorthand for

κ(X1, X1) = 8, κ(X2, X2) = −8, κ(X3, X3) = 8,

and κ(Xi, Xj) = 0 whenever i 6= j.

Proposition 16.2. The Lie algebra sl(2,C) is semi-simple.

Proof. Since the diagonal entries of κ are all non-zero, the Killing form is non-degenerate.
By Cartan’s criterion, this implies that sl(2,C) is semi-simple.
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Remark 16.3. There is one more thing that can be read off from the components of κ,
namely, that it is an indefinite form, i.e. the sign of κ(X,X) can be positive or negative
depending on which X ∈ sl(2,C) we pick.

A result from Lie theory states that the Killing form on the Lie algebra of a compact
Lie group is always negative semi-definite, i.e. κ(X,X) is always negative or zero, for all X
in the Lie algebra. Hence, we can conclude that SL(2,C) is not a compact Lie group.

In fact, sl(2,C) is more than just semi-simple.

Proposition 16.4. The Lie algebra sl(2,C) is simple.

Recall that a Lie algebra is said to be simple if it contains no non-trivial ideals, and
that an ideal I of a Lie algebra L is a Lie subalgebra of L such that

∀x ∈ I : ∀ y ∈ L : [x, y] ∈ I.

Proof. Consider the ideal of sl(2,C)

I := {αX1 + βX2 + γX3 | α, β, γ restricted so that I is an ideal}.

Since the bracket is bilinear, it suffices to check the result of bracketing an arbitrary element
of I with each of the basis vectors of sl(2,C). We find

[αX1 + βX2 + γX3, X1] = −2βX1 + 2γX3,

[αX1 + βX2 + γX3, X2] = 2αX2 − γX1,

[αX1 + βX2 + γX3, X3] = −2αX3 + βX1.

We need to choose α, β, γ so that the results always land back in I. Of course, we can
choose α, β, γ ∈ C and α = β = γ = 0, which correspond respectively to the trivial ideals
sl(2,C) and 0. If none of α, β, γ is zero, then you can check that the right hand sides above
are linearly independent, so that I contains three linearly independent vectors. Since the
only n-dimensional subspace of an n-dimensional vector space is the vector space itself, we
have I = L. Thus, we are left with the following cases:

i) if α = 0, then I ⊆ spanC({X2, X3}) and hence we must have β = γ = 0 as well;

ii) if β = 0, then I ⊆ spanC({X1, X3}), hence we must have α = 0, so that in fact
I ⊆ spanC({X3}), and hence γ = 0 as well;

iii) if γ = 0, then I ⊆ spanC({X1, X2}), hence we must have α = 0, so that in fact
I ⊆ spanC({X2}), and hence β = 0 as well.

In all cases, we have I = 0. Therefore, there are no non-trivial ideals of sl(2,C).
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16.2 The roots and Dynkin diagram of sl(2,C)

By observing the bracket relations of the basis elements of sl(2,C), we can see that

H := spanC({X1})

is a Cartan subalgebra of sl(2,C). Indeed, for any h ∈ H, there exists a ξ ∈ C such that
h = ξX1, and hence we have

ad(h)X2 = ξ[X1, X2] = 2ξX2,

ad(h)X3 = ξ[X1, X3] = −2ξX3.

Recall that in the section on Lie algebras, we re-interpreted these eigenvalue equations in
terms of functionals λ2, λ3 ∈ H∗

λ2 : H
∼−→ C λ3 : H

∼−→ C
ξX1 7→ 2ξ, ξX1 7→ −2ξ

whereby

ad(h)X2 = λ2(h)X2,

ad(h)X3 = λ3(h)X3.

Then, λ2 and λ3 are called the roots of sl(2,C), so that the root set is Φ = {λ2, λ3}. Of
course, we are mainly interested in a subset Π ⊂ Φ of fundamental roots, which satisfies

i) Π is a linearly independent subset of H∗;

ii) for any λ ∈ Φ, we have λ ∈ spanε,N(Π).

We can choose Π := {λ2}, even though Π := {λ3} would work just as well. Since |Π| = 1,
the Weyl group is generated by the single Weyl transformation

sλ2 : H∗R → H∗R

µ 7→ µ− 2
κ∗(λ2, µ)

κ∗(λ2, λ2)
λ2.

Recall that we can recover the entire root set Φ by acting on the fundamental roots with
Weyl transformations. Indeed, we have

sλ2(λ2) = λ2 − 2
κ∗(λ2, λ2)

κ∗(λ2, λ2)
λ2 = λ2 − 2λ2 = −λ2 = λ3,

as expected. Since there is only one fundamental root, the Cartan matrix is actually just a
1× 1 matrix. Its only entry is a diagonal entry, and since sl(2,C) is simple, we have

C = (2).

The Dynkin diagram of sl(2,C) is simply

Hence, with reference to the Cartan classification, we have A1 = sl(2,C).
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16.3 Reconstruction of A2 from its Dynkin diagram

We have seen an example of how to construct the Dynkin diagram of a Lie algebra, albeit
the simplest of this kind. Let us now consider the opposite direction. We will start from
the Dynkin diagram

We immediately see that we have two fundamental roots, i.e. Π = {π1, π2}, since there are
two circles in the diagram. The bond number is n12 = 1, so the two fundamental roots
have the same length. Moreover, by definition

1 = n12 = C12C21

and since the off-diagonal entries of the Cartan matrix are non-positive integers, the only
possibility is C12 = C21 = −1, so that we have

C =

(
2 −1

−1 2

)
.

To determine the angle ϕ between π1 and π2, recall that

1 = n12 = 4 cos2 ϕ,

and hence | cosϕ| = 1
2 . There are two solutions, namely ϕ = 60◦ and ϕ = 120◦.

x

y

−1

−1
2

1
2

1

0 60◦
120◦

180◦

360◦

cosx

By definition, we have

cosϕ =
κ∗(π1, π2)

|π1| |π2|
,

and therefore
0 > C12 = 2

κ∗(π1, π2)

κ∗(π1, π1)
= 2
|π1| |π2| cosϕ

κ∗(π1, π1)
= 2
|π2|
|π1|

cosϕ.

It follows that cosϕ < 0, and hence ϕ = 120◦. We can thus plot the two fundamental roots
in a plane as follows.

– 143 –



π1

π2

We can determine all the other roots in Φ by repeated action of the Weyl group. For
instance, we easily find that sπ1(π1) = −π1 and sπ2(π2) = −π2. We also have

sπ1(π2) = π2 − 2
κ∗(π1, π2)

κ∗(π1, π1)
π1 = π2 − 2(−1

2)π1 = π1 + π2.

Finally, we have sπ1+π2(π1 +π2) = −(π1 +π2). Any further action by Weyl transformations
simply permutes these roots. Hence, we have

Φ = {π1,−π1, π2,−π2, π1 + π2,−(π1 + π2)}

and these are all the roots.

π1

π2

−π1

−π2

π1 + π2

−(π1 + π2)

Since H∗ = spanC(Π), we have dimH∗ = 2, thus the dimension of the Cartan subalgebra
is also 2. Since |Φ| = 6, we know that any Cartan-Weyl basis of the Lie algebra A2 must
have 2 + 6 = 8 elements. Hence, the dimension of A2 is 8.

To complete our reconstruction of A2, we would now like to understand how its bracket
behaves. This amounts to finding its structure constants. Note that since dimA2 = 8, the
structure constants Ckij consist of 83 = 512 complex numbers (not all unrelated, of course).

Denote by {h1, h2, e3, . . . , e8} a Cartan-Weyl basis of A2, so that H = spanC({h1, h2})
and the eα are eigenvectors of every h ∈ H. Since A2 is simple, H is abelian and hence

[h1, h2] = 0 ⇒ Ck12 = Ck21 = 0, ∀ 1 ≤ k ≤ 8.

To each eα, for 3 ≤ α ≤ 8, there is an associated λα ∈ Φ such that

∀h ∈ H : ad(h)eα = λα(h)eα.
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In particular, for the basis elements h1, h2,

[h1, eα] = ad(h1)eα = λα(h1)eα,

[h2, eα] = ad(h2)eα = λα(h2)eα,

so that we have

C1
1α = C2

1α = 0, Cα1α = λα(h1), ∀ 3 ≤ α ≤ 8,

C1
2α = C2

2α = 0, Cα2α = λα(h2), ∀ 3 ≤ α ≤ 8.

Finally, we need to determine [eα, eβ]. By using the Jacobi identity, we have

[hi, [eα, eβ]] = −[eα, [eβ, hi]]− [eβ, [hi, eα]]

= −[eα,−λβ(hi)eβ]− [eβ, λα(hi)eα]

= λβ(hi)[eα, eβ] + λα(hi)[eα, eβ]

= (λα(hi) + λβ(hi))[eα, eβ],

that is,
ad(hi)[eα, eβ] = (λα(hi) + λβ(hi))[eα, eβ].

If λα + λβ ∈ Φ, we have [eα, eβ] = ξeγ for some 3 ≤ γ ≤ 8 and ξ ∈ C. Let us label the
roots in our previous plot as

λ3 λ4 λ5 λ6 λ7 λ8

π1 π2 π1 + π2 −π1 −π2 −(π1 + π2)

Then, for example
ad(h)[e3, e4] = (π1 + π2)(h)[e3, e4],

and hence [e3, e4] is an eigenvector of ad(h) with eigenvalues (π1 + π2)(h). But so is e5!
Hence, we must have [e3, e4] = ξe5 for some ξ ∈ C. Similarly, [e5, e7] = ξe3, and so on.

If λα + λβ /∈ Φ, then in order for the equation above to hold, we must have either
[eα, eβ] = 0 (so both sides are zero), or λα(h) + λβ(h) = 0 for all h, i.e. λα + λβ = 0 as
a functional. In the latter case, we must have [eα, eβ] ∈ H. This follows from a stronger
version of the maximality property of the Cartan subalgebra H of a simple Lie algebra L,
namely that (

∀h ∈ H : [h, x] = 0
)
⇒ x ∈ H.

Summarising, we have

[eα, eβ] =


ξeγ if λα + λβ ∈ Φ

∈ H if λα + λβ = 0

0 otherwise

and these relations con be used to determine the remaining structure constants of A2.
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17 Representation theory of Lie groups and Lie algebras

Lie groups and Lie algebras are used in physics mostly in terms of what are called rep-
resentations. Very often they are even defined in terms of their concrete representations.
We took a more abstract approach by defining a Lie group as a smooth manifold with a
compatible group structure, and its associated Lie algebra as the space of left-invariant
vector fields, which we then showed to be isomorphic to the tangent space at the identity.

17.1 Representations of Lie algebras

Definition. Let L be a Lie algebra. A representation of L is a Lie algebra homomorphism

ρ : L
∼−→ End(V ),

where V is some finite-dimensional vector space over the same field as L.

Recall that a linear map ρ : L
∼−→ End(V ) is a Lie algebra homomorphism if

∀x, y ∈ L : ρ([x, y]) = [ρ(x), ρ(y)] := ρ(x) ◦ ρ(y)− ρ(y) ◦ ρ(x),

where the right hand side is the natural Lie bracket on End(V ).

Definition. Let ρ : L
∼−→ End(V ) be a representation of L.

i) The vector space V is called the representation space of ρ.

ii) The dimension of the representation ρ is dimV .

Example 17.1. Consider the Lie algebra sl(2,C). We constructed a basis {X1, X2, X3}
satisfying the relations

[X1, X2] = 2X2,

[X1, X3] = −2X3,

[X2, X3] = X1.

Let ρ : sl(2,C)
∼−→ End(C2) be the linear map defined by

ρ(X1) :=

(
1 0

0 −1

)
, ρ(X2) :=

(
0 1

0 0

)
, ρ(X3) :=

(
0 0

1 0

)
(recall that a linear map is completely determined by its action on a basis, by linear con-
tinuation). To check that ρ is a representation of sl(2,C), we calculate

[ρ(X1), ρ(X2)] =

(
1 0

0 −1

)(
0 1

0 0

)
−
(

0 1

0 0

)(
1 0

0 −1

)
=

(
0 2

0 0

)
= ρ(2X2)

= ρ([X1, X2]).
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Similarly, we find

[ρ(X1), ρ(X3)] = ρ([X1, X3]),

[ρ(X2), ρ(X3)] = ρ([X2, X3]).

By linear continuation, ρ([x, y]) = [ρ(x), ρ(y)] for any x, y ∈ sl(2,C) and hence, ρ is a
2-dimensional representation of sl(2,C) with representation space C2. Note that we have

imρ(sl(2,C)) =

{(
a b

c d

)
∈ End(C2)

∣∣∣ a+ d = 0

}
= {φ ∈ End(C2) | trφ = 0}.

This is how sl(2,C) is often defined in physics courses, i.e. as the algebra of 2× 2 complex
traceless matrices.

Two representations of a Lie algebra can be related in the following sense.

Definition. Let L be a Lie algebra and let

ρ1 : L
∼−→ End(V1), ρ2 : L

∼−→ End(V2)

be representations of L. A linear map f : V1
∼−→ V2 is a homomorphism of representations if

∀x ∈ L : f ◦ ρ1(x) = ρ2(x) ◦ f.

Equivalently, if the following diagram commutes for all x ∈ L.

V1 V2

V1 V2

f

ρ1(x) ρ2(x)

f

If in addition f : V1
∼−→ V2 is a linear isomorphism, then f−1 : V2

∼−→ V1 is automatically
a homomorphism of representations, since

f ◦ ρ1(x) = ρ2(x) ◦ f ⇔ f−1 ◦ (f ◦ ρ1(x)) ◦ f−1 = f−1 ◦ (ρ2(x) ◦ f) ◦ f−1

⇔ ρ1(x) ◦ f−1 = f−1 ◦ ρ2(x).

Definition. An isomorphism of representations of Lie algebras is a bijective homomorphism
of representations.

Isomorphic representations necessarily have the same dimension.

Example 17.2. Consider so(3,R), the Lie algebra of the rotation group SO(3,R). It is a
3-dimensional Lie algebra over R. It has a basis {J1, J2, J3} satisfying

[Ji, Jj ] = CkijJk,
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where the structure constants Ckij are defined by first “pulling the index k down” using the
Killing form κab = CmanC

n
bm to obtain Ckij := κkmC

m
ij , and then setting

Ckij := εijk :=


1 if (i j k) is an even permutation of (1 2 3)

−1 if (i j k) is an odd permutation of (1 2 3)

0 otherwise.

By evaluating these, we find

[J1, J2] = J3,

[J2, J3] = J1,

[J3, J1] = J2.

Define a linear map ρvec : so(3,R)
∼−→ End(R3) by

ρvec(J1) :=

0 0 0

0 0 −1

0 1 0

 , ρvec(J2) :=

 0 0 1

0 0 0

−1 0 0

 , ρvec(J3) :=

0 −1 0

1 0 0

0 0 0

 .

You can easily check that this is a representation of so(3,R). However, as you may be aware
from quantum mechanics, there is another representation of so(3,R), namely

ρspin : so(3,R)
∼−→ End(C2),

with C2 understood as a 4-dimensional R-vector space, defined by

ρspin(J1) := − i

2
σ1, ρspin(J2) := − i

2
σ2, ρspin(J3) := − i

2
σ3,

where σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

You can again check that this is a representation of so(3,R). Since

dimR3 = 3 6= 4 = dimC2,

the representations ρvec and ρspin are not isomorphic.

Any (non-abelian) Lie algebra always has at least two special representations.

Definition. Let L be a Lie algebra. A trivial representation of L is defined by

ρtrv : L
∼−→ End(V )

x 7→ ρtrv(x) := 0,

where 0 denotes the trivial endomorphism on V .
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Definition. The adjoint representation of L is

ρadj : L
∼−→ End(L)

x 7→ ρadj(x) := ad(x).

These are indeed representations since we have already shown that ad is a Lie algebra
homomorphism, while for the trivial representations we have

∀x, y ∈ L : ρtrv([x, y]) = 0 = [ρtrv(x), ρtrv(y)].

Definition. A representation ρ : L
∼−→ End(V ) is called faithful if ρ is injective, i.e.

dim(imρ(L)) = dimL.

Example 17.3. All representations considered so far are faithful, except for the trivial rep-
resentations whenever the Lie algebra L is not itself trivial. Consider, for instance, the
adjoint representation. We have

ad(x) = ad(y)⇔ ∀ z ∈ L : ad(x)z = ad(y)z

⇔ ∀ z ∈ L : [x, z] = [y, z]

⇔ ∀ z ∈ L : [x− y, z] = 0.

If L is trivial, then any representation is faithful. Otherwise, there is some non-zero z ∈ L,
hence we must have x− y = 0, so x = y, and thus ad is injective.

Definition. Given two representations ρ1 : L
∼−→ End(V1), ρ2 : L

∼−→ End(V2), we can
construct new representations called

i) the direct sum representation

ρ1 ⊕ ρ2 : L
∼−→ End(V1 ⊕ V2)

x 7→ (ρ1 ⊕ ρ2)(x) := ρ1(x)⊕ ρ2(x)

ii) the tensor product representation

ρ1 ⊗ ρ2 : L
∼−→ End(V1 × V2)

x 7→ (ρ1 ⊗ ρ2)(x) := ρ1(x)⊗ idV2 + idV1 ⊗ρ2(x).

Example 17.4. The direct sum representation ρvec ⊕ ρspin : so(3,R)
∼−→ End(R3 ⊕C2) given

in block-matrix form by

(ρvec ⊕ ρspin)(x) =

(
ρvec(x) 0

0 ρspin(x)

)

is a 7-dimensional representation of so(3,R).
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Definition. A representation ρ : L
∼−→ End(V ) is called reducible if there exists a non-trivial

vector subspace U ⊆ V which is invariant under the action of ρ, i.e.

∀x ∈ L : ∀u ∈ U : ρ(x)u ∈ U.

In other words, ρ restricts to a representation ρ|U : L
∼−→ End(U).

Definition. A representation is irreducible if it is not reducible.

Example 17.5. i) The representation ρvec⊕ρspin : so(3,R)
∼−→ End(R3⊕C2) is reducible

since, for example, we have a subspace R3 ⊕ 0 such that

∀x ∈ so(3,R) : ∀u ∈ R3 ⊕ 0 : (ρvec ⊕ ρspin)(x)u ∈ R3 ⊕ 0.

ii) The representations ρvec and ρspin are both irreducible.

Remark 17.6. Just like the simple Lie algebras are the building blocks of all semi-simple Lie
algebras, the irreducible representations of a semi-simple Lie algebra are the building blocks
of all finite-dimensional representations of the Lie algebra. Any such representation con be
decomposed as the direct sum of irreducible representations, which can then be classified
according to their so-called highest weights.

17.2 The Casimir operator

To every representation ρ of a compact Lie algebra (i.e. the Lie algebra of a compact Lie
group) there is associated an operator Ωρ, called the Casimir operator. We will need some
preparation in order to define it.

Definition. Let ρ : L
∼−→ End(V ) be a representation of a complex Lie algebra L. We

define the ρ-Killing form on L as

κρ : L× L ∼−→ C
(x, y) 7→ κρ(x, y) := tr(ρ(x) ◦ ρ(y)).

Of course, the Killing form we have considered so far is just κad. Similarly to κad, every
κρ is symmetric and associative with respect to the Lie bracket of L.

Proposition 17.7. Let ρ : L
∼−→ End(V ) be a faithful representation of a complex semi-

simple Lie algebra L. Then, κρ is non-degenerate.

Hence, κρ induces an isomorphism L
∼−→ L∗ via

L 3 x 7→ κρ(x,−) ∈ L∗.

Recall that if {X1, . . . , XdimL} is a basis of L, then the dual basis {X̃1, . . . , X̃dimL} of L∗

is defined by
X̃i(Xj) = δij .
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By using the isomorphism induced by κρ, we can find some ξ1, . . . , ξdimL ∈ L such that we
have κ(ξi,−) = X̃i or, equivalently,

∀x ∈ L : κρ(x, ξi) = X̃i(x).

We thus have

κρ(Xi, ξj) = δij :=

{
1 if i 6= j

0 otherwise.

Proposition 17.8. Let {Xi} and {ξj} be defined as above. Then

[Xj , ξk] =

dimL∑
m=1

Ckmjξm,

where Ckmj are the structure constants with respect to {Xi}.

Proof. By using the associativity of κρ, we have

κρ(Xi, [Xj , ξk]) = κρ([Xi, Xj ], ξk) = Cmijκρ(Xm, ξk) = Cmijδmk = Ckij .

But we also have

κρ

(
Xi,

dimL∑
m=1

Ckmjξm

)
=

dimL∑
m=1

Ckmjκρ(Xi, ξm) =
dimL∑
m=1

Ckmjδim = Ckij .

Therefore

∀ 1 ≤ i ≤ dimL : κρ

(
Xi, [Xj , ξk]−

dimL∑
m=1

Ckmjξm

)
= 0

and hence, the result follows from the non-degeneracy of κρ.

We are now ready to define the Casimir operator and prove the subsequent theorem.

Definition. Let ρ : L
∼−→ End(V ) be a faithful representation of a complex (compact) Lie

algebra L and let {X1, . . . , XdimL} be a basis of L. The Casimir operator associated to the
representation ρ is the endomorphism Ωρ : V

∼−→ V

Ωρ :=
dimL∑
i=1

ρ(Xi) ◦ ρ(ξi).

Theorem 17.9. Let Ωρ the Casimir operator of a representation ρ : L
∼−→ End(V ). Then

∀x ∈ L : [Ωρ, ρ(x)] = 0,

that is, Ωρ commutes with every endomorphism in imρ(L).
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Proof. Note that the bracket above is that on End(V ). Let x = xkXk ∈ L. Then

[Ωρ, ρ(x)] =

[ dimL∑
i=1

ρ(Xi) ◦ ρ(ξi), ρ(xkXk)

]

=
dimL∑
i,k=1

xk[ρ(Xi) ◦ ρ(ξi), ρ(Xk)].

Observe that if the Lie bracket as the commutator with respect to an associative product,
as is the case for End(V ), we have

[AB,C] = ABC − CBA
= ABC − CBA−ACB +ACB

= A[B,C] + [A,C]B.

Hence, by applying this, we obtain

dimL∑
i,k=1

xk[ρ(Xi) ◦ ρ(ξi), ρ(Xk)] =

dimL∑
i,k=1

xk
(
ρ(Xi) ◦ [ρ(ξi), ρ(Xk)] + [ρ(Xi), ρ(Xk)] ◦ ρ(ξi)

)
=

dimL∑
i,k=1

xk
(
ρ(Xi) ◦ ρ([ξi, Xk]) + ρ([Xi, Xk]) ◦ ρ(ξi)

)
=

dimL∑
i,k,m=1

xk
(
ρ(Xi) ◦ ρ(−Cimkξm) + ρ(CmikXm) ◦ ρ(ξi)

)
=

dimL∑
i,k,m=1

xk
(
−Cimkρ(Xi) ◦ ρ(ξm) + Cmikρ(Xm) ◦ ρ(ξi)

)
=

dimL∑
i,k,m=1

xk
(
−Cimkρ(Xi) ◦ ρ(ξm) + Cimkρ(Xi) ◦ ρ(ξm)

)
= 0,

where we have swapped the dummy summation indices i and m in the second term.

Lemma 17.10 (Schur). If ρ : L
∼−→ End(V ) is irreducible, then any operator S which

commutes with every endomorphism in imρ(L) has the form

S = cρ idV

for some constant cρ ∈ C (or R, if L is a real Lie algebra).

It follows immediately that Ωρ = cρ idV for some cρ but, in fact, we can say more.

Proposition 17.11. The Casimir operator of ρ : L
∼−→ End(V ) is Ωρ = cρ idV , where

cρ =
dimL

dimV
.

– 152 –



Proof. We have
tr(Ωρ) = tr(cρ idV ) = cρ dimV

and

tr(Ωρ) = tr

( dimL∑
i=1

ρ(Xi) ◦ ρ(ξi)

)

=
dimL∑
i=1

tr(ρ(Xi) ◦ ρ(ξi))

=
dimL∑
i=1

κρ(Xi, ξi)

=
dimL∑
i=1

δii

= dimL,

which is what we wanted.

Example 17.12. Consider the Lie algebra so(3,R) with basis {J1, J2, J3} satisfying

[Ji, Jj ] = εijkJk,

where we assume the summation convention on the lower index k. Recall that the repre-
sentation ρvec : so(3,R)

∼−→ End(R3) is defined by

ρvec(J1) :=

0 0 0

0 0 −1

0 1 0

 , ρvec(J2) :=

 0 0 1

0 0 0

−1 0 0

 , ρvec(J3) :=

0 −1 0

1 0 0

0 0 0

 .

Let us first evaluate the components of κρvec . We have

(κρvec)11 := κρvec(J1, J1) = tr(ρvec(J1) ◦ ρvec(J1))

= tr((ρvec(J1))2)

= tr

0 0 0

0 0 −1

0 1 0


2

= tr

0 0 0

0 −1 0

0 0 −1


= −2.

After calculating the other components similarly, we find

[(κρvec)ij ] =

−2 0 0

0 −2 0

0 0 −2

 .
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Thus, κρvec(Ji, ξj) = δij requires that we define ξi := −1
2Ji. Then, we have

Ωρvec :=

3∑
i=1

ρvec(Ji) ◦ ρvec(ξi)

=
3∑
i=1

ρvec(Ji) ◦ ρvec(−1
2Ji)

= −1

2

3∑
i=1

(ρvec(Ji))
2

= −1

2


0 0 0

0 0 −1

0 1 0


2

+

 0 0 1

0 0 0

−1 0 0


2

+

0 −1 0

1 0 0

0 0 0


2 

= −1

2


0 0 0

0 −1 0

0 0 −1

+

−1 0 0

0 0 0

0 0 −1

+

−1 0 0

0 −1 0

0 0 0




=

1 0 0

0 1 0

0 0 1

 .

Hence Ωρvec = cρvec idR3 with cρvec = 1, which agrees with our previous theorem since

dim so(3,R)

dimR3
=

3

3
= 1.

Example 17.13. Let us consider the Lie algebra so(3,R) again, but this time with represen-
tation ρspin. Recall that this is given by

ρspin(J1) := − i

2
σ1, ρspin(J2) := − i

2
σ2, ρspin(J3) := − i

2
σ3,

where σ1, σ2, σ3 are the Pauli matrices. Recalling that σ2
1 = σ2

2 = σ2
3 = idC2 , we calculate

(κρspin)11 := κρspin(J1, J1) = tr(ρspin(J1) ◦ ρspin(J1))

= tr((ρspin(J1))2)

= (− i
2)2 tr(σ2

1)

= −1
4 tr(idC2)

= −1.

Note that tr(idC2) = 4, since tr(idV ) = dimV and here C2 is considered as a 4-dimensional
vector space over R. Proceeding similarly, we find that the components of κρspin are

[(κρspin)ij ] =

−1 0 0

0 −1 0

0 0 −1

 .
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Hence, we define ξi := −Ji. Then, we have

Ωρspin :=

3∑
i=1

ρspin(Ji) ◦ ρspin(ξi)

=
3∑
i=1

ρspin(Ji) ◦ ρspin(−Ji)

= −
3∑
i=1

(ρspin(Ji))
2

= −
(
− i

2

)2
3∑
i=1

σ2
i

=
1

4

3∑
i=1

idC2

=
3

4
idC2 ,

in accordance with the fact that

dim so(3,R)

dimC2
=

3

4
.

17.3 Representations of Lie groups

We now turn to representations of Lie groups. Given a vector space V , recall that the
subset of End(V ) consisting of the invertible endomorphisms and denoted

GL(V ) ≡ Aut(V ) := {φ ∈ End(V ) | detφ 6= 0},

forms a group under composition, called the automorphism group (or general linear group)
of V . Moreover, if V is a finite-dimensional K-vector space, then V ∼=vec K

dimV and hence
the group GL(V ) can be given the structure of a Lie group via

GL(V ) ∼=Lie grp GL(KdimV ) := GL(dimV,K).

This is, of course, if we have established a topology and a differentiable structure on Kd,
as is the case for Rd and Cd.

Definition. A representation of a Lie group (G, •) is a Lie group homomorphism

R : G→ GL(V )

for some finite-dimensional vector space V .

Recall that R : G→ GL(V ) is a Lie group homomorphism if it is smooth and

∀ g1, g2 ∈ G : R(g1 • g2) = R(g1) ◦R(g2).

Note that, as is the case with any group homomorphism, we have

R(e) = idV and R(g−1) = R(g)−1.
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Example 17.14. Consider the Lie group SO(2,R). As a smooth manifold, SO(2,R) is iso-
morphic to the circle S1. Let U = S1 \ {p0}, where p is any point of S1, so that we can
define a chart θ : U → [0, 2π) ⊆ R on S1 by mapping each point in U to an “angle” in
[0, 2π).

p

θ(p)

U

p0

The operation
p1 • p2 := (θ(p1) + θ(p2)) mod 2π

endows S1 ∼=diff SO(2,R) with the structure of a Lie group. Then, a representation of
SO(2,R) is given by

R : SO(2,R)→ GL(R2)

p 7→
(

cos θ(p) sin θ(p)

− sin θ(p) cos θ(p)

)
.

Indeed, the addition formulæfor sine and cosine imply that

R(p1 • p2) = R(p1) ◦R(p2).

Example 17.15. Let G be a Lie group (we suppress the • in this example). For each g ∈ G,
define the Adjoint map

Adg : G→ G

h 7→ ghg−1.

Note the capital “A” to distinguish this from the adjoint map on Lie algebras. Since Adg is a
composition of the Lie group multiplication and inverse map, it is a smooth map. Moreover,
we have

Adg(e) = geg−1 = gg−1 = e.

Hence, the push-forward of Adg at the identity is the map

(Adg∗)e : TeG
∼−→ TAdg(e)G = TeG.

Thus, we have Adg ∈ End(TeG). In fact, you can check that

(Adg−1∗)e ◦ (Adg∗)e = (Adg∗)e ◦ (Adg−1∗)e = idTeG,

and hence we have, in particular, Adg ∈ GL(TeG) ∼=Lie grp GL(L(G)).
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We can therefore construct a map

Ad: G→ GL(TeG)

g 7→ Adg∗

which, as you can check, is a representation of G on its Lie algebra.

Remark 17.16. Since a representation R of a Lie group G is required to be smooth, we can
always consider its differential or push-forward at the identity

(R∗)e : TeG
∼−→ TidV GL(V ).

Since for any A,B ∈ TeG we have

(R∗)e[A,B] = [(R∗)eA, (R∗)eB],

the map (R∗)e is a representation of the Lie algebra of G on the vector space GL(V ). In
fact, in the previous example we have

(Ad∗)e = ad,

where ad is the adjoint representation of TeG.
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18 Reconstruction of a Lie group from its algebra

We have seen in detail how to construct a Lie algebra from a given Lie group. We would
now like to consider the inverse question, i.e. whether, given a Lie algebra, we can construct
a Lie group whose associated Lie algebra is the given one and, if this is the case, whether
this correspondence is bijective.

18.1 Integral curves

Definition. Let M be a smooth manifold and let Y ∈ Γ(TM). An integral curve of Y is
smooth curve γ : (−ε, ε)→M , with ε > 0, such that

∀λ ∈ (−ε, ε) : Xγ,γ(λ) = Y |γ(λ).

It follows from the local existence and uniqueness of solutions to ordinary differential
equations that, given any Y ∈ Γ(TM) and any p ∈ M , there exist ε > 0 and a smooth
curve γ : (−ε, ε)→M with γ(0) = p which is an integral curve of Y .

Moreover, integral curves are locally unique. By this we mean that if γ1 and γ2 are
both integral curves of Y through p, i.e. γ1(0) = γ2(0) = p, then γ1 = γ2 on the intersection
of their domains of definition. We can get genuine uniqueness as follows.

Definition. The maximal integral curve of Y ∈ Γ(TM) through p ∈ M is the unique
integral curve γ : Ipmax →M of Y through p, where

Ipmax :=
⋃
{I ⊆ R | there exists an integral curve γ : I →M of Y through p}.

For a given vector field, in general, Ipmax will differ from point to point.

Definition. A vector field is complete if Ipmax = R for all p ∈M .

We have the following result.

Theorem 18.1. On a compact manifold, every vector field is complete.

On a Lie group, even if non-compact, there are always complete vector fields.

Theorem 18.2. Every left-invariant vector field on a Lie group is complete.

The maximal integral curves of left-invariant vector fields are crucial in the construction
of the map that allows us to go from a Lie algebra to a Lie group.

18.2 The exponential map

Let G be a Lie group. Recall that given any A ∈ TeG, we can define the uniquely determined
left-invariant vector field XA := j(A) via the isomorphism j : TeG

∼−→ L(G) as

XA|g := (`g)∗(A).

Then let γA : R→ G be the maximal integral curve of XA through e ∈ G.
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Definition. Let G be a Lie group. The exponential map is defined as

exp: TeG→ G

A 7→ exp(A) := γA(1)

Theorem 18.3. i) The map exp is smooth and a local diffeomorphism around 0 ∈ TeG,
i.e. there exists an open V ⊆ TeG containing 0 such that the restriction

exp |V : V → exp(V ) ⊆ G

is bijective and both exp |V and (exp |V )−1 are smooth.

ii) If G is compact, then exp is surjective.

Note that the maximal integral curve of X0 is the constant curve γ0(λ) ≡ e, and
hence we have exp(0) = e. Then first part of the theorem then says that we can recover a
neighbourhood of the identity of G from a neighbourhood of the identity of TeG.

Since TeG is a vector space, it is non-compact (intuitively, it extends infinitely far away
in every direction) and hence, if G is compact, exp cannot be injective. This is because, by
the second part of the theorem, it would then be a diffeomorphism TeG→ G. But as G is
compact and TeG is not, they are not diffeomorphic.

Proposition 18.4. Let G be a Lie group. The image of exp: TeG → G is the connected
component of G containing the identity.

Therefore, if G itself is connected, then exp is again surjective. Note that, in general,
there is no relation between connected and compact topological spaces, i.e. a topological
space can be either, both, or neither.

Example 18.5. Let B : V × V be a pseudo inner product on V . Then

O(V ) := {φ ∈ GL(V ) | ∀ v, w ∈ V : B(φ(v), φ(w)) = B(v, w)}

is called the orthogonal group of V with respect to B. Of course, if B or the base field
of V need to be emphasised, they can be included in the notation. Every φ ∈ O(V ) has
determinant 1 or −1. Since det is multiplicative, we have a subgroup

SO(V ) := {φ ∈ O(V ) | detφ = 1}.

These are, in fact, Lie subgroups of GL(V ). The Lie group SO(V ) is connected while

O(V ) = SO(V ) ∪ {φ ∈ O(V ) | detφ = −1}

is disconnected. Since SO(V ) contains idV , we have

so(V ) := TidV SO(V ) = TidV O(V ) =: o(V )

and
exp(so(V )) = exp(o(V )) = SO(V ).
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Example 18.6. Choosing a basis A1, . . . , AdimG of TeG often provides a convenient co-
ordinatisation of G near e. Consider, for example, the Lorentz group

O(3, 1) ≡ O(R4) = {Λ ∈ GL(R4) | ∀x, y ∈ R4 : B(Λ(x),Λ(y)) = B(x, y)},

where B(x, y) := ηµνx
µyν , with 0 ≤ µ, ν ≤ 3 and

[ηµν ] = [ηµν ] :=


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

The Lorentz group O(3, 1) is 6-dimensional, hence so is the Lorentz algebra o(3, 1). For
convenience, instead of denoting a basis of o(3, 1) as {M i | i = 1, . . . , 6}, we will denote it
as {Mµν | 0 ≤ µ, ν ≤ 3} and require that the indices µ, ν be anti-symmetric, i.e.

Mµν = −Mνµ.

Then Mµν = 0 when ρ = σ, and the set {Mµν | 0 ≤ µ, ν ≤ 3}, while technically not
linearly independent, contains the 6 independent elements that we want to consider as a
basis. These basis elements satisfy the following bracket relation

[Mµν ,Mρσ] = ηνσMµρ + ηµρMνσ − ηνρMµσ − ηµσMνρ.

Any element λ ∈ o(3, 1) can be expressed as linear combination of the Mµν ,

λ = 1
2ωµνM

µν

where the indices on the coefficients ωµν are also anti-symmetric, and the factor of 1
2 ensures

that the sum over all µ, ν counts each anti-symmetric pair only once. Then, we have

Λ = exp(λ) = exp(1
2ωµνM

µν) ∈ O(3, 1).

The subgroup of O(3, 1) consisting of the the space-orientation preserving Lorentz transfor-
mations, or proper Lorentz transformations, is denoted by SO(3, 1). The subgroup consist-
ing of the time-orientation preserving, or orthochronous, Lorentz transformations is denoted
by O+(3, 1). The Lie group O(3, 1) is disconnected: its four connected components are

i) SO+(3, 1) := SO(3, 1) ∩ O+(3, 1), also called the restricted Lorentz group, consisting
of the proper orthochronous Lorentz transformations;

ii) SO(3, 1) \O+(3, 1), the proper non-orthochronous transformations;

iii) O+(3, 1) \ SO(3, 1), the improper orthochronous transformations;

iv) O(3, 1) \ (SO(3, 1) ∪O+(3, 1)), the improper non-orthochronous transformations.
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Since idR4 ∈ SO+(3, 1), we have exp(o(3, 1)) = SO+(3, 1). Then {Mµν} provides a nice
co-ordinatisation of SO+(3, 1) since, if we choose

[ωµν ] =


0 ψ1 ψ2 ψ3

−ψ1 0 ϕ3 −ϕ2

−ψ2 −ϕ3 0 ϕ1

−ψ3 ϕ2 −ϕ1 0


then the Lorentz transformation exp(1

2ωµνM
µν) ∈ SO+(3, 1) corresponds to a boost in the

(ψ1, ψ2, ψ3) direction and a space rotation by (ϕ1, ϕ2, ϕ3). Indeed, in physics one often
thinks of the Lie group SO+(3, 1) as being generated by {Mµν}.

A representation ρ : TidR4
SO+(3, 1)

∼−→ End(R4) is given by

ρ(Mµν)ab := ηνaδµb − η
µaδνb

which is probably how you have seen the Mµν themselves defined in some previous course
on relativity theory. Using this representation, we get a corresponding representation

R : SO+(3, 1)→ GL(R4)

via the exponential map by defining

R(Λ) = exp(1
2ωµνρ(Mµν)).

Then, the map exp becomes the usual exponential (series) of matrices.

Definition. A one-parameter subgroup of a Lie group G is a Lie group homomorphism

ξ : R→ G,

with R understood as a Lie group under ordinary addition.

Example 18.7. LetM be a smooth manifold and let Y ∈ Γ(TM) be a complete vector field.
The flow of Y is the smooth map

Θ: R×M →M

(λ, p) 7→ Θλ(p) := γp(λ),

where λp is the maximal integral curve of Y through p. For a fixed p, we have

Θ0 = idM , Θλ1 ◦Θλ2 = Θλ1+λ2 , Θ−λ = Θ−1
λ .

For each λ ∈ R, the map Θλ is a diffeomorphism M →M . Denoting by Diff(M) the group
(under composition) of the diffeomorphisms M →M , we have that the map

ξ : R→ Diff(M)

λ 7→ Θλ

is a one-parameter subgroup of Diff(M).
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Theorem 18.8. Let G be a Lie group.

i) Let A ∈ TeG. The map

ξA : R→ G

λ 7→ ξA(λ) := exp(λA)

is a one-parameter subgroup.

ii) Every one-parameter subgroup of G has the form ξA for some A ∈ TeG.

Therefore, the Lie algebra allows us to study all the one-parameter subgroups of the
Lie group.

Theorem 18.9. Let G and H be Lie groups and let φ : G → H be a Lie group homomor-
phism. Then, for all A ∈ TeGG, we have

φ(exp(A)) = exp((φ∗)eGA).

Equivalently, the following diagram commutes.

TeGG TeHH

G H

exp

(φ∗)eG

exp

φ

In particular, for φ ≡ Adg : G→ G, we have

Adg(exp(A)) = exp((Adg∗)eA).
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19 Principal fibre bundles

Very roughly speaking, a principal fibre bundle is a bundle whose typical fibre is a Lie group.
Principal fibre bundles are so immensely important because they allow us to understand
any fibre bundle with fibre F on which a Lie group G acts. These are then called associated
fibre bundles, and will be discussed later on.

19.1 Lie group actions on a manifold

Definition. Let (G, •) be a Lie group and let M be a smooth manifold. A smooth map

B : G×M →M

(g, p) 7→ g B p

satisfying

i) ∀ p ∈M : e B p = p;

ii) ∀ g1, g2 ∈ G : ∀ p ∈M : (g1 • g2) B p = g1 B (g2 B p),

is called a left Lie group action, or left G-action, on M .

Definition. A manifold equipped with a left G-action is called a left G-manifold.

Remark 19.1. Note that in the above definition, the smooth structures on G and M were
only used in the requirement that B be smooth. By dropping this condition, we obtain the
usual definition of a group action on a set. Some of the definitions that we will soon give
for Lie groups and smooth manifolds, such as those of orbits and stabilisers, also have clear
analogues to the case of bare groups and sets.

Example 19.2. Let G be a Lie group and let R : G→ GL(V ) be a representation of G on a
vector space V . Define a map

B : G× V → V

(g, v) 7→ g B v := R(g)v.

We easily check that e B v := R(e)v = idV v = v and

(g1 • g2) B v := R(g1 • g2)v

= (R(g1) ◦R(g2))v

= R(g1)(R(g2)v)

= g1 B (g2 B v),

for any v ∈ V and any g1, g2 ∈ G. Moreover, if we equip V with the usual smooth structure,
the map B is smooth and hence a Lie group action on V . It follows that representations of
Lie groups are just a special case of left Lie group actions. We can therefore think of left
G-actions as generalised representations of G on some manifold.
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Definition. Similarly, a right G-action on M is a smooth map

C : M ×G→M

(p, g) 7→ p C g

satisfying

i) ∀ p ∈M : p C g = p;

ii) ∀ g1, g2 ∈ G : ∀ p ∈M : p C (g1 • g2) = (p C g1) C g2.

Proposition 19.3. Let B be a left G-action on M . Then

C : M ×G→M

(p, g) 7→ p C g := g−1 B p

is a right G-action on M .

Proof. First note that C is smooth since it is a composition of B and the inverse map on
G, which are both smooth. We have p C e := e B p = p and

p C (g1 • g2) := (g1 • g2)−1 B p

= (g−1
2 • g

−1
1 ) B p

= g−1
2 B (g−1

1 B p)

= g−1
2 B (p C g1)

= (p C g1) C g2,

for all p ∈M and g1, g2 ∈ G, and hence C is a right G-action.

Remark 19.4. Since for each g ∈ G we also have g−1 ∈ G, if we need some action of G on
M , then a left action is just as good as a right action. Only later, within the context of
principal and associated fibre bundles, we will attach separate “meanings” to left and right
actions. Some of the next definitions and results will only be given in terms of left actions,
but they obviously apply to right actions as well.

Remark 19.5. Recall that if we have a basis e1, . . . , edimM of TpM and X1, . . . , XdimM are
the components of some X ∈ TpM in this basis, then under a change of basis

ẽa = Abaeb,

we have X = X̃aẽa, where
X̃a = (A−1)abX

b.

Once expressed in terms of principal and associated fibre bundles, we will see that the
“recipe” of labelling the basis by lower indices and the vector components by upper indices,
as well as their transformation law, can be understood as a right action of GL(dimM,R)

on the basis and a left action of the same GL(dimM,R) on the components.

– 164 –



Definition. Let G,H be Lie groups, let ρ : G→ H be a Lie group homomorphism and let

B : G×M →M,

I : H ×N → N

be left actions of G and H on some smooth manifolds M and N , respectively. Then, a
smooth map f : M → N is said to be ρ-equivariant if the diagram

G×M H ×N

M N

B

ρ×f

I

f

where (ρ× f)(g, p) := (ρ(g), f(p)) ∈ H ×N , commutes. Equivalently,

∀ g ∈ G : ∀ p ∈M : f(g B p) = ρ(g) I f(p).

In other words, if ρ : G → H is a Lie group homomorphism, then the ρ-equivariant
maps are the “action-preserving” maps between the G-manifold M and the H-manifold N .

Remark 19.6. Note that by setting ρ = idG or f = idM , the notion of f being ρ-equivariant
reduces to what we might call a homomorphism of G-manifolds in the former case, and a
homomorphism of left actions on M in the latter.

Definition. Let B : G×M → M be a left G-action. For each p ∈ M , we define the orbit
of p as the set

Gp := {q ∈M | ∃ g ∈ G : q = g B p}.

Alternatively, the orbit of p is the image of G under the map (− B p). It consists of
all the points in M that can be reached from p by successive applications of the action B.

Example 19.7. Consider the action induced by representation of SO(2,R) as rotation ma-
trices in End(R2). The orbit of any p ∈ R2 is the circle of radius |p| centred at the origin.

R2

p

Gp

|p|

q

Gq

|q|

G00
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It should be intuitively clear from the definition that the orbits of two points are either
disjoint or coincide. In fact, we have the following.

Proposition 19.8. Let B : G×M →M be an action on M . Define a relation on M

p ∼ q :⇔ ∃ g ∈ G : q = g B p.

Then ∼ is an equivalence relation on M .

Proof. Let p, q, r ∈M . We have

i) p ∼ p since p = e B p;

ii) p ∼ q ⇒ q ∼ p since, if q = g B p, then

p = e B p = (g−1 • g) B p = g−1 B (g B p) = g−1 B q;

iii) (p ∼ q and q ∼ r)⇒ p ∼ r since, if q = g1 B p and r = g2 B q, then

r = g2 B (g1 B p) = (g1 • g2) B p.

Therefore, ∼ is an equivalence relation on M .

The equivalence classes of ∼ are, by definition, the orbits.

Definition. Let B : G×M →M be an action on M . The orbit space of M is

M/G := M/∼= {Gp | p ∈M}.

Example 19.9. The orbit space of our previous SO(2,R)-action on R2 is the partition of R2

into concentric circles centred at the origin, plus the origin itself.

Definition. Let B : G×M →M be a G-action on M . The stabiliser of p ∈M is

Sp := {g ∈ G | g B p = p}.

Note that for each p ∈M , the stabiliser Sp is a subgroup of G.

Example 19.10. In our SO(2,R) example, we have Sp = {idR2} for p 6= 0 and S0 = SO(2,R).

Definition. A left G-action B : G×M →M is said to be

i) free if for all p ∈M , we have Sp = {e};

ii) transitive if for all p, q ∈M , there exists g ∈ G such that p = g B p.

Example 19.11. The action B : G× V → V induced by a representation R : G→ GL(V ) is
never free since we always have S0 = G.

Example 19.12. Consider the action B : T(n)× Rn → Rn of the n-dimensional translation
group T(n) on Rn. We have, rather trivially, T(n)p = Rn for every p ∈ Rn.It is also easy
to show that this action is free and transitive.
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Proposition 19.13. Let B : G×M →M be a free action. Then

g1 B p = g2 B p ⇔ g1 = g2.

Proof. The (⇐) direction is obvious. Suppose that there exist p ∈ M and g1, g2 ∈ G such
that g1 B p = g2 B p. Then

g1 B p = g2 B p ⇔ g−1
2 B (g1 B p) = g−1

2 B (g2 B p)

⇔ (g−1
2 • g1) B p = (g−1

2 • g2) B p

⇔ (g−1
2 • g1) B p = (e B p)

⇔ (g−1
2 • g1) B p = p.

Hence g−1
2 • g1 ∈ Sp, but since B is free we have Sp = {e}, and thus g1 = g2.

Proposition 19.14. If B : G×M →M is a free action, then

∀ p ∈ G : Gp ∼=diff G.

Example 19.15. Define B : SO(2,R) × R2 \ {0} → R2 \ {0} to coincide with the action
induced by the representation of SO(2,R2) on R2 for each non-zero point of R2. Then this
action is free, since we have Sp = {idR2} for p 6= 0, and the previous proposition implies

∀ p ∈ R2 \ {0} : SO(2,R)p ∼=diff SO(2,R) ∼=diff S
1.

19.2 Principal fibre bundles

This is a good time to review our earlier section on bundles. We can specialize our definition
of bundle to define a smooth bundle, which is just a bundle (E, π,M) where E and M are
smooth manifolds and the projection π : E →M is smooth. Two smooth bundles (E, π,M)

and (E′, π′,M ′) are isomorphic if there exist diffeomorphisms u, f such that the following
diagram commutes

E E′

M M ′

π

u

π′

f

Definition. Let G be a Lie group. A smooth bundle (E, π,M) is called a principal G-
bundle if E is equipped with a free right G-action and

E

M

π
∼=bdl

E

E/G

ρ

where ρ is the quotient map, defined by sending each p ∈ E to its equivalence class (i.e.
orbit) in the orbit space E/G.
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Observe that since the right action of G on E is free, for each p ∈ E we have

preimρ(Gp) = Gp ∼=diff G.

We said at beginning that, roughly speaking, a principal bundle is a bundle whose fibre at
each point is a Lie group. Note that the formal definition is that a principal G-bundle is a
bundle which is isomorphic to a bundle whose fibres are the orbits under the right action
of G, which are themselves isomorphic to G since the action is free.

Remark 19.16. A slight generalisation would be to consider smooth bundles E π−→ M

where E is equipped with a right G-action which is free and transitive on each fibre of
E

π−→ M . The isomorphism in our definition enforces the fibre-wise transitivity since G
acts transitively on each Gp by the definition of orbit.

Example 19.17. a) Let M be a smooth manifold. Consider the space

LpM := {(e1, . . . , edimM ) | e1, . . . , edimM is a basis of TpM} ∼=vec GL(dimM,R).

We know from linear algebra that the bases of a vector space are related to each other
by invertible linear transformations. Hence, we have

LpM ∼=vec GL(dimM,R).

We define the frame bundle of M as

LM :=
∐
p∈M

LpM

with the obvious projection map π : LM →M sending each basis (e1, . . . , edimM ) to
the unique point p ∈ M such that (e1, . . . , edimM ) is a basis of TpM . By proceeding
similarly to the case of the tangent bundle, we can equip LM with a smooth structure
inherited from that of M . We then find

dimLM = dimM + dimTpM = dimM + (dimM)2.

b) We would now like to make LM π−→ M into a principal GL(dimM,R)-bundle. We
define a right GL(dimM,R)-action on LM by

(e1, . . . , edimM ) C g := (ga1ea, . . . , g
a

dimMea),

where gab are the components of the endomorphism g ∈ GL(dimM,R) with respect
to the standard basis on Rn. Note that if (e1, . . . , edimM ) ∈ LpM , we must also have
(e1, . . . , edimM ) C g ∈ LpM . This action is free since

(e1, . . . , edimM ) C g = (e1, . . . , edimM )⇔ (ga1ea, . . . , g
a

dimMea) = (e1, . . . , edimM )

and hence, by linear independence, gab = δab , so g = idRn . Note that since all bases
of each TpM are related by some g ∈ GL(dimM,R), C is also fibre-wise transitive.
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c) We now have to show that

LM

M

π
∼=bdl

LM

LM
/

GL(dimM,R)

ρ

i.e. that there exist smooth maps u and f such that the diagram

LM LM

M LM
/

GL(dimM,R)

u

π

u−1

ρ

f

f−1

commutes. We can simply choose u = u−1 = idLM , while we define f as

f : M → LM
/

GL(dimM,R)

p 7→ GL(dimM,R)(e1,...,edimM ),

where (e1, . . . , edimM ) is some basis of TpM , i.e. (e1, . . . , edimM ) ∈ preimπ({p}). Note
that f is well-defined since every basis of TpM gives rise to the same orbit in the orbit
space LM

/
GL(dimM,R). Moreover, it is injective since

f(p) = f(p′) ⇔ GL(dimM,R)(e1,...,edimM ) = GL(dimM,R)(e′1,...,e
′
dimM ),

which is true only if (e1, . . . , edimM ) and (e′1, . . . , e
′
dimM ) are basis of the same tangent

space, so p = p′. It is clearly surjective since every orbit in LM
/

GL(dimM,R) is the
orbit of some basis of some tangent space TpM at some point p ∈ M . The inverse
map is given explicitly by

f−1 : LM
/

GL(dimM,R)→M

GL(dimM,R)(e1,...,edimM ) 7→ π((e1, . . . , edimM )).

Finally, we have

(ρ ◦ idLM )(e1, . . . , edimM ) = GL(dimM,R)(e1,...,edimM ) = (f ◦ π)(e1, . . . , edimM )

and thus LM π−→M is a principal G-bundle, called the frame bundle of M .

Remark 19.18. A note to the careful reader. As we have just done in the previous example,
in the following we will sometimes simply assume that certain maps are smooth, instead of
rigorously proving it.
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19.3 Principal bundle morphisms

Recall that a bundle morphism (also called simply a bundle map) between two bundles
(E, π,M) and (E′, π′,M ′) is a pair of maps (u, f) such that the diagram

E E′

M M ′

π

u

π′

f

commutes, that is, f ◦ π = π′ ◦ u.

Definition. Let (P, π,M) and (Q, π′, N) be principal G-bundles. A principal bundle mor-
phism from (P, π,M) to (Q, π′, N) is a pair of smooth maps (u, f) such that the diagram

P Q

P Q

M N

u

CG

π

u

JG

π′

f

commutes, that is for all p ∈ P and g ∈ G, we have

(f ◦ π)(p) = (π′ ◦ u)(p)

u(p C g) = u(p) J g.

Note that P CG−−−−−→ P is a shorthand for the inclusion of P into the product P ×G
followed by the right action C, i.e.

P P
CG

= P P ×G P
i1 C

and similarly for Q JG−−−−−→ Q.

Definition. A principal bundle morphism between two principal G-bundles is an isomor-
phism (or diffeomorphism) of principal bundles if it is also a bundle isomorphism.

Remark 19.19. Note that the passage from principal bundle morphism to principal bundle
isomorphism does not require any extra condition involving the Lie group G. We will soon
see that this is because the two bundles are both principal G-bundles. We can further
generalise the notion of principal bundle morphism as follows.
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Definition. Let (P, π,M) be a principal G-bundle, let (Q, π′, N) be a principal H-bundle,
and let ρ : G → H be a Lie group homomorphism. A principal bundle morphism from
(P, π,M) to (Q, π′, N) is a pair of smooth maps (u, f) such that the diagram

P Q

P ×G Q×H

P Q

M N

u

C

u×ρ

J

i1

π

u

i1

π′

f

commutes, that is f ◦ π = π′ ◦ u and u is a ρ-equivariant map

∀ p ∈ P : ∀ g ∈ G : u(p C g) = u(p) J ρ(g).

Definition. A principal bundle morphism between principal G-bundle and a principal H-
bundle is an isomorphism (or diffeomorphism) of principal bundles if it is also a bundle
isomorphism and ρ is a Lie group isomorphism.

Lemma 19.20. Let (P, π,M) and (Q, π′,M) be principal G-bundles over the same base
manifold M . Then, any u : P → Q such that (u, idM ) is a principal bundle morphism is
necessarily a diffeomorphism.

P Q

P Q

M

u

CG

π

u

JG

π′

Proof. We already know that u is smooth since (u, idM ) is assumed to be a principal bundle
morphism. It remains to check that u is bijective and its inverse is also smooth.

i) Let p1, p2 ∈ P be such that u(p1) = u(p2). Then

π(p1) = π′(u(p1)) = π′(u(p2)) = π(p2),
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that is, p1 and p2 belong to the same fibre. As the action of G on P is fibre-wise
transitive, there is a unique g ∈ G such that p1 = p2 C g. Then

u(p1) = u(p2 C g) = u(p2) J g = u(p1) J g,

so g ∈ Su(p1), but since J is free, we have g = e and thus

p1 = p2 C e = p2.

Therefore u is injective.

ii) Let q ∈ Q. Choose some p ∈ preimπ(π′(q)). Then, we have

π′(u(p)) = π(p) = π′(q)

so that u(p) and q belong to the same fibre. Hence, there is a unique g ∈ G such that
q = u(p) J g. We thus have

q = u(p) J g = u(p C g)

and since p C g ∈ P , the map u is surjective.

Hence, u is a diffeomorphism.

Definition. A principal G-bundle (P, π,M) if it is called trivial if it is isomorphic as a
principal G-bundle to the principal G-bundle (M × G, π1,M) where π1 is the projection
onto the first component and the action is defined as

J : (M ×G)×G→M ×G
((p, g), g′) 7→ (p, g) J g′ := (p, g • g′).

By the previous lemma, a principal G-bundle (P, π,M) is trivial if there exists a smooth
map u : P →M ×G such that the following diagram commutes.

P M ×G

P M ×G

M

u

CG

π

u

JG

π1

The following result provides a necessary and sufficient criterion for when a principal
bundle is trivial. Note that while we have used the lower case letter p almost exclusively to
denote points of the base manifold M , in the next proof we will use it to denote points of
the total space P instead.
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Theorem 19.21. A principal G-bundle (P, π,M) is trivial if, and only if, there exists a
smooth section σ ∈ Γ(P ), that is, a smooth σ : M → P such that π ◦ σ = idM .

Proof. (⇒) Suppose that (P, π,M) is trivial. Then there exists a diffeomorphism u : P →
M ×G which make the following diagram commute

P

P M ×G

M

CG

π

u−1

π1

We can define

σ : M → P

m 7→ u−1(m, e),

where e is the identity of G. Then σ is smooth since it is the composition of u−1 with
the map p 7→ (p, e), which are both smooth. We also have

(π ◦ σ)(pm = π(u−1(m, e)) = π1(m, e) = m,

for all m ∈M , hence π ◦ σ = idM and thus σ ∈ Γ(P ).

(⇐) Suppose that there exists a smooth section σ : M → P . Let p ∈ P and consider the
point σ(π(p)) ∈ P . We have

π(σ(π(p))) = idM (π(p)) = π(p),

hence σ(π(p)) and p belong to the same fibre, and thus there exists a unique group
element in G which links the two points via C. Since this element depends on both
σ and p, let us denote it by χσ(p). Then, χσ defines a function

χσ : P → G

p 7→ χσ(p)

and we can write
∀ p ∈ P : p = σ(π(p)) C χσ(p).

In particular, for any other g ∈ G we have p C g ∈ P and thus

p C g = σ(π(p C g)) C χσ(p C g) = σ(π(p)) C χσ(p C g),

where the second equality follows from the fact that the fibres of P are precisely the
orbits under the action of G.
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On the other hand, we can act on the right with an arbitrary g ∈ G directly to obtain

p C g = (σ(π(p)) C χσ(p)) C g = σ(π(p)) C (χσ(p) • g).

Combining the last two equations yields

σ(π(p)) C χσ(p C g) = σ(π(p)) C (χσ(p) • g)

and hence
χσ(p C g) = (χσ(p) • g).

We can now define the map

uσ : P →M ×G
p 7→ (π(p), χσ(p)).

By our previous lemma, it suffices to show that uσ is a principal bundle map.

P M ×G

P M ×G

M

uσ

CG

π

uσ

JG

π1

By definition, we have

(π1 ◦ uσ)(p) = π1(π(p), χσ(p)) = π(p)

for all p ∈ P , so the lower triangle commutes. Moreover, we have

uσ(p C g) = (π(p C g), χσ(p C g))

= (π(p), χσ(p) • g))

= (π(p), χσ(p)) J g

= uσ(p) J g

for all p ∈ P and g ∈ G, so the upper square also commutes and hence (P, π,M) is a
trivial bundle.

Example 19.22. The existence of a section on the frame bundle LM can be reduced to the
existence of (dimM) non-everywhere vanishing linearly independent vector fields on M .
Since no such vector field exists on even-dimensional spheres, LS2n is always non-trivial.
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20 Associated fibre bundles

An associated fibre bundle is a fibre bundle which is associated (in a precise sense) to a
principal G-bundle. Associated bundles are related to their underlying principal bundles in
a way that models the transformation law for components under a change of basis.

20.1 Associated fibre bundles

Definition. Let (P, π,M) be a principalG-bundle and let F be a smooth manifold equipped
with a left G-action B. We define

i) PF := (P × F )/∼G, where ∼G is the equivalence relation

(p, f) ∼G (p′, f ′) :⇔ ∃ g ∈ G :

{
p′ = p C g
f ′ = g−1 B f

We denote the points of PF as [p, f ].

ii) The map

πF : PF →M

[p, f ] 7→ π(p),

which is well-defined since, if [p′, f ′] = [p, f ], then for some g ∈ G

πF ([p′, f ′]) = πF ([p C g, g−1 B f ]) := π(p C g) = π(p) =: πF ([p, f ]).

The associated bundle (to (P, π,M), F and B) is the bundle (PF , πF ,M).

Example 20.1. Recall that the frame bundle (LM,π,M) is a principal GL(d,R)-bundle,
where d = dimM , with right G-action C : LM ×G→ LM given by

(e1, . . . , ed) C g := (ga1ea, . . . , g
a
dea).

Let F := Rd (as a smooth manifold) and define a left action

B : GL(d,R)× Rd → Rd

(g, x) 7→ g B x,

where
(g B x)a := gabx

b.

Then (LMRd , πRd ,Rd) is the associated bundle. In fact, we have a bundle isomorphism

LMRd TM

M M

πRd

u

π

idM
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where (TM, π,M) is the tangent bundle of M , and u is defined as

u : LMRd → TM

[(e1, . . . , ed), x] 7→ xaea.

The inverse map u−1 : TM → LMRd works as follows. Given any X ∈ TM , pick any
basis (e1, . . . , ed) of the tangent space at the point π(X) ∈M , i.e. any element of Lπ(X)M .
Decompose X as xaea, with each xa ∈ R, and define

u−1(X) := [(e1, . . . , ed), x].

The map u−1 is well-defined since, while the pair ((e1, . . . , ed), x) ∈ LM×Rd clearly depends
on the choice of basis, the equivalence class

[(e1, . . . , ed), x] ∈ LMRd := (LM × Rd)/∼G

does not. It includes all pairs ((e1, . . . , ed) C g, g−1 B x) for every g ∈ GL(d,R), i.e. every
choice of basis together with the “right” components x ∈ Rd.
Remark 20.2. Even though the associated bundle (LMRd , πRd ,Rd) is isomorphic to the
tangent bundle (TM, π,M), note a subtle difference between the two. On the tangent
bundle, the transformation law for a change of basis and the related transformation law for
components are deduced from the definitions by undergraduate linear algebra.

On the other hand, the transformation laws on LMRd were chosen by us in its definition.
We chose the Lie group GL(d,R), the specific right action C on LM , the space Rd, and the
specific left action on Rd. It just happens that, with these choices, the resulting associated
bundle is isomorphic to the tangent bundle. Of course, we have the freedom to make
different choices and construct bundles which behave very differently from TM .

Example 20.3. Consider the principal GL(d,R)-bundle (LM,π,M) again, with the same
right action as before. This time we define

F := (Rd)×p × (Rd∗)×q := Rd × · · · × Rd︸ ︷︷ ︸
p times

×Rd∗ × · · · × Rd∗︸ ︷︷ ︸
q times

with left GL(d,R)-action B : GL(d,R)× F → F given by

(g B f)
a1···ap

b1···bq := ga1ã1 · · · g
ap
ãp

(g−1)b̃1b1 · · · (g
−1)

b̃q
bq
f
ã1···ãp

b̃1···̃bq
.

Then, the associated bundle (LMF , πF ,M) thus constructed is isomorphic to (T pqM,π,M),
the (p, q)-tensor bundle on M .

Now for something new, consider the following.

Definition. Let M be a smooth manifold and let (LM,π,M) be its frame bundle, with
right GL(d,R)-action as above. Let F := (Rd)×p×(Rd∗)×q and define a left GL(d,R)-action
on F by

(g B f)
a1···ap

b1···bq := (det g−1)ω ga1ã1 · · · g
ap
ãp

(g−1)b̃1b1 · · · (g
−1)

b̃q
bq
f
ã1···ãp

b̃1···̃bq
,

where ω ∈ Z. Then the associated bundle (LMF , πF ,M) is called the (p, q)-tensor ω-density
bundle on M , and its sections are called (p, q)-tensor densities of weight ω.
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Remark 20.4. Some special cases include the following.

i) If ω = 0, we recover the (p, q)-tensor bundle on M .

ii) If F = R (i.e. p = q = 0), the left action reduces to

(g B f) = (det g−1)ω f,

which is the transformation law for a scalar density of weight ω.

iii) If GL(d,R) is restricted in such a way that we always have (det g−1) = 1, then tensor
densities are indistinguishable from ordinary tensor fields. This is why you probably
haven’t met tensor densities in your special relativity course.

Example 20.5. Recall that if B is a bilinear form on a K-vector space V , the determinant
of B is not independent from the choice of basis. Indeed, if {ea} and {e′b := gabea} are both
basis of V , where g ∈ GL(dimV,K), then

(detB)′ = (det g−1)2 detB.

Once recast in the principal and associated bundle formalism, we find that the determinant
of a bilinear form is a scalar density of weight 2.

20.2 Associated bundle morphisms

Definition. Let (PF , πF ,M) to (QF , π
′
F , N) be the associated bundles (with the same fibre

F ) of two principal G-bundles (P, π,M) and (Q, π′, N). An associated bundle map between
the associated bundles is a bundle map (ũ, v) between them such that for some u, the pair
(u, v) is a principal bundle map between the underlying principal G-bundles and

ũ([p, f ]) := [u(p), f ].

Equivalently, the following diagrams both commute.

PF QF

M N

πF

ũ

π′F

v

P Q

P Q

M N

u

CG

π

u

JG

π′

v

Definition. An associated bundle map (ũ, v) is an associated bundle isomorphism if ũ and
v are invertible and (ũ−1, v−1) is also an associated bundle map.
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Remark 20.6. Note that two associated F -fibre bundles may be isomorphic as bundles but
not as associated bundles. In other words, there may exist a bundle isomorphism between
them, but there may not exist any bundle isomorphism between them which can be written
as in the definition for some principal bundle isomorphism between the underlying principal
bundles.

Recall that an F -fibre bundle (E, π,M) is called trivial if there exists a bundle isomorphism

F E M × F

M

π

u

π1

while a principal G-bundle is called trivial if there exists a principal bundle isomorphism

P M ×G

P M ×G

M

u

CG

π

u

JG

π1

Definition. An associated bundle (PF , πF ,M) is called trivial if the underlying principal
G-bundle (P, π,M) is trivial.

Proposition 20.7. A trivial associated bundle is a trivial fibre bundle.

Note that the converse does not hold. An associated bundle can be trivial as a fibre
bundle but not as an associated bundle, i.e. the underlying principal fibre bundle need not
be trivial simply because the associated bundle is trivial as a fibre bundle.

Definition. Let H be a closed Lie subgroup of G. Let (P, π,M) be a principal H-bundle
and (Q, π′,M) a principal G-bundle. If there exists a principal bundle map from (P, π,M)

to (Q, π′,M), i.e. a smooth bundle map which is equivariant with respect to the inclusion of
H into G, then (P, π,M) is called an H-restriction of (Q, π′,M), while (Q, π′,M) is called
a G-extension of (P, π,M).

Theorem 20.8. Let H be a closed Lie subgroup of G.

i) Any principal H-bundle can be extended to a principal G-bundle.

ii) A principal G-bundle (P, π,M) can be restricted to a principal H-bundle if, and only
if, the bundle (P/H, π′,M) has a section.
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Example 20.9. i) The bundle (LM/SO(d), π,M) always has a section, and since SO(d)

is a closed Lie subgroup of GL(d,R), the frame bundle can be restricted to a principal
SO(d)-bundle. This is related to the fact that any manifold can be equipped with a
Riemannian metric.

ii) The bundle (LM/ SO(1, d − 1), π,M) may or may not have a section. For example,
the bundle (LS2/ SO(1, 1), π, S2) does not admit any section, and hence we cannot
restrict (LS2/ SO(1, 1), π, S2) to a principal SO(1, 1)-bundle, even though SO(1, 1) is
a closed Lie subgroup of GL(2,R). This is related to the fact that the 2-sphere cannot
be equipped with a Lorentzian metric.
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21 Connections and connection 1-forms

In elementary courses on differential geometry or general relativity, the notions of con-
nection, parallel transport and covariant derivative are often confused with one another.
Sometimes, the terms are even used as synonyms. If you have seen any of that before, it is
probably best to forget about it for the time being.

What a connection really is, is just additional structure on a principal bundle consisting
is a “smooth” assignment of a particular vector space at each point of the base manifold
compatible with the right action of the Lie group on the principal bundle. Such an assign-
ment is, in fact, equivalent to a certain Lie-algebra-valued one-form on the principal bundle,
as we will discuss below. Later, we will see that a connection on a principal bundle induces
a parallel transport map on the principal bundle, which in turn induces a parallel transport
map on any of its associated bundles. If the fibres of the associated bundle carry a vector
space structure, then the parallel transport can be used to define a covariant derivative on
the associated bundle.

Hence the conceptual sequence “connection, parallel transport covariant derivative” is in
decreasing order of generality, and it should be clear that treating these terms as synonyms
will inevitably lead to confusion. We will now discuss the first of these in some detail.

21.1 Connections on a principal bundle

Let (P, π,M) be a principal G-bundle. Recall that every element of A ∈ TeG gives rise to
a left invariant vector field on G which we denoted by XA. However, we will now reserve
this notation for a vector field on P instead. Given A ∈ TeG, we define XA ∈ Γ(TP ) by

XA
p : C∞(P )

∼−→ R
f 7→ [f(p C exp(tA))]′(0),

where the derivative is to be taken with respect to t. We also define the maps

ip : TeG→ TpP

A 7→ XA
p ,

which can be shown to be a Lie algebra homomorphism.

Definition. Let (P, π,M) be a principal bundle and let p ∈ P . The vertical subspace at p
is the vector subspace of TpP given by

VpP := ker((π∗)p)

= {Xp ∈ TpP | (π∗)p(Xp) = 0}.

Lemma 21.1. For all A ∈ TeG and p ∈ P , we have XA
p ∈ VpP .

Proof. Since the action of G simply permutes the elements within each fibre, we have

π(p) = π(p C exp(tA)),
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for any t. Let f ∈ C∞(M) be arbitrary. Then

(π∗)pX
A
p (f) = XA

p (f ◦ π)

= [(f ◦ π)(p C exp(tA))]′(0)

= [f(π(p))]′(0)

= 0,

since f(π(p)) is constant. Hence XA
p ∈ VpP . Alternatively, one can also argue that (π∗)pX

A
p

is the tangent vector to a constant curve on M .

In particular, the map ip : TeG
∼−→ VpP is now a bijection. The idea of a connection

is to make a choice of how to “connect” the individual points in “neighbouring” fibres in a
principal fibre bundle.

Definition. Let (P, π,M) be a principal bundle and let p ∈ P . A horizontal subspace at p
a vector subspace HpP of TpP which is complementary to VpP , i.e.

TpP = HpP ⊕ VpP.

The choice of horizontal space at p ∈ P is not unique. However, once a choice is made,
there is a unique decomposition of each Xp ∈ TpP as

Xp = hor(Xp) + ver(Xp),

with hor(Xp) ∈ HpP and ver(Xp) ∈ VpP .

Definition. A connection on a principal G-bundle (P, π,M) is a choice of horizontal space
at each p ∈ P such that

i) For all g ∈ G, p ∈ P and Xp ∈ HpP , we have

(C g)∗Xp ∈ HpCgP,

where (C g)∗ is the push-forward of the map (− C g) : P → P and it is a bijection.
We can also write this condition more concisely as

(C g)∗(HpP ) = HpCgP.

ii) For every smooth X ∈ Γ(TP ), the two summands in the unique decomposition

X|p = hor(X|p) + ver(X|p)

at each p ∈ P , extend to smooth hor(X), ver(X) ∈ Γ(TM).

The definition formalises the idea that the assignment of an HpP to each p ∈ P should
be “smooth” within each fibre (i) as well as between different fibres (ii).

Remark 21.2. For each Xp ∈ TpP , both hor(Xp) and ver(Xp) depend on the choice of HpP .
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21.2 Connection one-forms

Technically, the choice of a horizontal subspace HpP at each p ∈ P providing a connection
is conveniently encoded in the thus induced Lie-algebra-valued one-form

ωp : TpP
∼−→ TeG

Xp 7→ ωp(Xp) := i−1
p (ver(Xp))

Definition. The map ω : p → ωp sending each p ∈ P to the TeG-valued one-form ωp is
called the connection one-form with respect to the connection.

Remark 21.3. We have seen how to produce a one-form from a choice of horizontal spaces
(i.e. a connection). The choice of horizontal spaces can be recovered from ω by

HpP = ker(ωp).

Of course, not every (Lie-algebra-valued) one-form on P is such that ker(ωp) gives a
connection on the principal bundle. What we would now like to do is to study some crucial
properties of ω. We will then elevate these properties to a definition of connection one-
form absent a connection, so that we may re-define the notion of connection in terms of a
connection one-form.

Lemma 21.4. For all p ∈ P , g ∈ G and A ∈ TeG, we have

(C g)∗X
A
p = X

(Adg−1 )∗A
pCg .

Proof. Let f ∈ C∞(P ) be arbitrary. We have

(C g)∗X
A
p (f) = XA

p (f ◦ (− C g))

= [f(p C exp(tA) C g)]′(0)

= [f(p C g C g−1 C exp(tA) C g)]′(0)

= [f(p C g C (g−1 • exp(tA) • g)]′(0)

= [f(p C g C Adg−1(exp(tA))]′(0)

= [f(p C g C exp(t(Adg−1)∗A)]′(0)

= X
(Adg−1 )∗A
pCg (f),

which is what we wanted.

Theorem 21.5. A connection one-form ω with respect to a connection satisfies

a) For all p ∈ P , we have ωp(XA
p ) = A, that is ωp ◦ ip = idTeG.

TeG VpP

TeG

ip

idTeG
ωp|VpP
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b) ((C g)∗ω)|p(Xp) = (Adg−1)∗(ωp(Xp))

TpP TeG

TeG

ωp

((Cg)∗ω)|p
(Adg−1 )∗

c) ω is a smooth one-form.

Proof. a) Since XA
p ∈ VpP , by definition of ω we have

ωp(X
A
p ) := i−1

p (ver(XA
p )) = i−1

p (XA
p ) = A.

b) First observe that the left hand side is linear in Xp. Consider the two cases

b.1) Suppose that Xp ∈ VpP . Then Xp = XA
p for some A ∈ TeG. Hence

((C g)∗ω)|p(XA
p ) = ωpCg((C g)∗X

A
p )

= ωpCg

(
X

(Adg−1 )∗A
pCg

)
= (Adg−1)∗A

= (Adg−1)∗(ωp(X
A
p ))

b.2) Suppose now that Xp ∈ HpP = ker(ωp). Then

((C g)∗ω)|p(Xp) = ωpCg((C g)∗Xp) = 0

since (C g)∗Xp ∈ HpCgP = ker(ωpCg).

Let Xp ∈ TpP . We have

((C g)∗ω)|p(Xp) = ((C g)∗ω)|p(ver(Xp) + hor(Xp))

= ((C g)∗ω)|p(ver(Xp)) + ((C g)∗ω)|p(hor(Xp))

= (Adg−1)∗(ωp(ver(Xp))) + 0

= (Adg−1)∗(ωp(ver(Xp))) + (Adg−1)∗(ωp(hor(Xp)))

= (Adg−1)∗(ωp(ver(Xp) + hor(Xp)))

= (Adg−1)∗(ωp(Xp))

c) We have ω = i−1 ◦ ver and both i−1 and ver are smooth.
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22 Local representations of a connection on the base manifold: Yang-
Mills fields

We have seen how to associate a connection one-form to a connection, i.e. a certain Lie-
algebra-valued one-form to a smooth choice of horizontal spaces on the principal bundle.
We will now study how we can express this connection one-form locally on the base manifold
of the principal bundle.

22.1 Yang-Mills fields and local representations

Recall that a connection one-form on a principal bundle (P, π,M) is a smooth Lie-algebra-
valued one-form, i.e. a smooth map

ω : Γ(TP )
∼−→ TeG

which “behaves like a one-form”, in the sense that it is R-linear and satisfies the Leibniz
rule, and such that, in addition, for all A ∈ TeG, g ∈ G and X ∈ Γ(TP ), we have

i) ω(XA) = A;

ii) ((C g)∗ω)(X) = (Adg−1)∗(ω(X)).

If the pair (u, f) is a principal bundle automorphism of (P, π,M), i.e. if the diagram

P P

P P

M M

u

u

π

CG

π

CG

f

commutes, we should be able to pull a connection one-form ω on P back to another con-
nection one-form u∗ω on P .

Γ(TP ) TeG

Γ(TP )

ω

u
u∗ω

Recall that for a one-form ω : Γ(TN)
∼−→ C∞(N), we defined

Φ∗(ω) : Γ(TM)
∼−→ C∞(M)

X 7→ ω(Φ∗(X)) ◦ φ
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for any diffeomorphism φ : M → N . One might be worried about whether this and similar
definitions apply to Lie-algebra-valued one-forms but, in fact, they do. In our case, even
though ω lands in TeG, its domain is still Γ(TP ) and if u : P → P is a diffeomorphism of
P , then u∗X ∈ Γ(TP ) and so

u∗ω : X 7→ (u∗ω)(X) := ω(u∗(X)) ◦ u

is again a Lie-algebra-valued one-form. Note that we will no longer distinguish notationally
between the push-forward of tangent vectors and of vector fields.

In practice, e.g. for calculational purposes, one may wish to restrict attention to some
open subset U ⊆M . Let σ : U → P be a local section of P , i.e. π ◦ σ = idU .

P

P

U

π

CG

σ

Definition. Given a connection one-form ω on P , such a local section σ induces

i) a Yang-Mills field ωU : Γ(TU)
∼−→ TeG given by

ωU := σ∗ω;

ii) a local trivialisation of the principal bundle P , i.e. a map

h : U ×G→ P

(m, g) 7→ σ(m) C g;

iii) a local representation of ω on U by

h∗ω : Γ(T (U ×G))
∼−→ TeG.

Note that, at each point (m, g) ∈ U ×G, we have

T(m,g)(U ×G) ∼=Lie alg TmU ⊕ TgG.

Remark 22.1. Both the Yang-Mills field ωU and the local representation h∗ω encode the
information carried by ω locally on U . Since h∗ω involves U × G while ωU doesn’t, one
might guess that h∗ω gives a more “accurate” picture of ω on U than the Yang-Mills field.
But in fact, this is not the case. They both contain the same amount of local information
about the connection one-form ω.
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22.2 The Maurer-Cartan form

Th relation between the Yang-Mills field and the local representation is provided by the
following result.

Theorem 22.2. For all v ∈ TmU and γ ∈ TgG, we have

(h∗ω)(m,g)(v, γ) = (Adg−1)∗(ω
U (v)) + Ξg(γ),

where Ξg is the Maurer-Cartan form

Ξg : TgG
∼−→ TeG

LAg 7→ A.

Remark 22.3. Note that we have represented a generic element of TgG as LAg . This is due
to the following. Recall that the left translation map `g : G→ G is a diffeomorphism of G.
As such, its push-forward at any point is a linear isomorphism. In particular, we have

((`g)∗)e : TeG
∼−→ TgG,

that is, the tangent space at any point g ∈ G can be canonically identified with the tangent
space at the identity. Hence, we can write any element of TgG as

LAg := ((`g)∗)e(A)

for some A ∈ TeG.

Let us consider some specific examples.

Example 22.4. Any chart (U, x) of a smooth manifoldM induces a local section σ : U → LM

of the frame bundle of M by

σ(m) :=

((
∂

∂x1

)
m

, . . . ,

(
∂

∂xdimM

)
m

)
∈ LmM.

Since GL(dimM,R) can be identified with an open subset of R(dimM)2 , we have

Te GL(dimM,R) ∼=Lie alg R(dimM)2 ,

where R(dimM)2 is understood as the algebra of dimM × dimM square matrices, with
bracket induced by matrix multiplication. In fact, this holds for any open subset of a
vector space, when considered as a smooth manifold. A connection one-form

ω : Γ(LM)
∼−→ Te GL(dimM,R)

can thus be given in terms of (dimM)2 functions

ωij : Γ(LM)
∼−→ R, 1 ≤ i, j ≤ dimM.
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The associated Yang-Mills field ωU := σ∗ω is, at each point m ∈ U , a Lie-algebra-valued
one-form on the vector space TmU . By using the co-ordinate induced basis and its dual
basis, we can express (ωU )m in terms of components as

(ωU )m = ωUµ (m) (dxµ)m,

where 1 ≤ µ ≤ dimM and

ωUµ (m) := (ωU )m

((
∂

∂xµ

)
m

)
.

Since (ωU )m : TmU
∼−→ TeG, we have ωUµ : U → TeG. Hence, by employing he same isomor-

phism as above, we can identify each ωUµ (m) with a square dimM × dimM matrix and
define the symbol

Γijµ(m) := (ωU (m))ijµ := (ωUµ (m))ij ,

usually referred to as the Christoffel symbol . The middle term is just an alternative notation
for the right-most side. Note that, even though all three indices i, j, µ run from 1 to dimM ,
the numbers Γijµ(m) do not constitute the components of a (1, 2)-tensor on U . Only the µ
index transforms as a one-form component index, i.e.

((g B ωU (m))ij)µ = (g−1)ν (ωU (m))ijν

for g ∈ GL(dimM,R), while the i, j indices simply label different one-forms, (dimM)2 in
total.

Note that the Maurer-Cartan form appearing in Theorem 22.2 only depends on the Lie
group (and its Lie algebra), not on the principal bundle P or the restriction U ⊆M . In the
following example, we will go through the explicit calculation of the Maurer-Cartan form
of the Lie group GL(d,R).

Example 22.5. Let (GL+(d,R), x) be a chart on GL(d,R), where GL+(d,R) denotes an
open subset of GL(d,R) containing the identity idRd , and let xij : GL+(d,R) → R denote
the corresponding co-ordinate functions

GL+(d,R) x(GL+(d,R)) ⊆ Rd2

R

xij

x

projij

so that xij(g) := gij . Recall that the co-ordinate functions are smooth maps on the chart
domain, i.e. we have xij ∈ C∞(GL+(d,R)). Also recall that to each A ∈ TidRd

GL(d,R)

there is associated a left-invariant vector field

LA : C∞(GL+(d,R))
∼−→ C∞(GL+(d,R))

which, at each point g ∈ GL(d,R), is the tangent vector to the curve

γA(t) := g • exp(tA).
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Consider the action of LA on the co-ordinate functions:

(LAxij)(g) = [xij(g • exp(tA))]′(0)

= [xij(g • etA)]′(0)

= (gik(e
tA)kj)

′(0)

= gikA
k
j ,

where we have used the fact that for a matrix Lie group, the exponential map is just the
ordinary exponential

exp(A) = eA :=
∞∑
n=0

1

n!
An.

Hence, we can write

LA|g = gikA
k
j

(
∂

∂xij

)
g

from which we can read-off the Maurer-Cartan form of GL(d,R)

(Ξg)
i
j := (g−1)ik(dx

k
j)g.

Indeed, we can quickly check that

(Ξg)
i
j(L

A) = (g−1)ik(dx
k
j)g

(
gprA

r
q

(
∂

∂xpq

)
g

)
= (g−1)ikg

p
rA

r
qδ
k
pδ
q
j

= (g−1)ipg
p
rA

r
j

= δirA
r
j

= Aij .

22.3 The gauge map

In physics, we are often prompted to write down a Yang-Mills field because we have local
information about a connection. We can then try to reconstruct the global connection by
glueing the Yang-Mills fields on several open subsets of our manifold.

P

U1 U2

π π

σ1 σ2

Suppose, for instance, that we have two open subsets U1, U2 ⊆ M and consider the Yang-
Mills fields associated to two local connections σ1, σ2. If ωU1 and ωU2 are both local versions
of a unique connection one-form, then is U1 ∩ U2 6= ∅, the Yang-Mills fields ωU1 and ωU2

should satisfy some compatibility condition on U1 ∩ U2.
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Definition. Within the above set-up, the gauge map is the map

Ω: U1 ∩ U2 → G

where, for each m ∈ U1 ∩ U2, the Lie group element Ω(m) ∈ G satisfies

σ2(m) = σ1(m) C Ω(m).

Note that since the G-action C on P is free, for each m there exists a unique Ω(m)

satisfying the above condition, and hence the gauge map Ω is well-defined.

Theorem 22.6. Under the above assumptions, we have

(ωU2)m = (AdΩ−1(m))∗(ω
U1) + (Ω∗Ξg)m.

Example 22.7. Consider again the frame bundle LM of some manifold M . Let us evaluate
explicitly the pull-back along Ω of the Maurer-Cartan form. Since Ξg : TgG → TeG and
Ω: U1∩U2 → TeG, we have Ω∗Ξg : T (U1∩U2)→ TeG. Let x be a chart map near the point
m ∈ U1 ∩ U2. We have

((Ω∗Ξg)m)ij

((
∂

∂xµ

)
m

)
= (ΞΩ(m))

i
j

(
Ω∗

(
∂

∂xµ

)
m

)
= (Ω(m)−1)ik(dx̃

k
j)Ω(m)

(
Ω∗

(
∂

∂xµ

)
m

)
= (Ω(m)−1)ik

(
Ω∗

(
∂

∂xµ

)
m

)
(x̃kj)

= (Ω(m)−1)ik

(
∂

∂xµ

)
m

(x̃kj ◦ Ω)

= (Ω(m)−1)ik

(
∂

∂xµ

)
m

(Ω(m))kj .

hence, we can write

((Ω∗Ξg)m)ij = (Ω(m)−1)ik

(
∂

∂xµ

)
m

(Ω(m))kjdx
µ

=: (Ω−1dΩ)ij .

Let us now compute the other summand. Recall that Adg is the map

Adg : G→ G

h 7→ g • h • g−1

and since Adg(e) = e, the push-forward ((Adg)∗)e : TeG
∼−→ TeG is a linear endomorphism

of TeG. Moreover, since here G = GL(d,R) is a matrix Lie group, we have

((Adg)∗A)ij = gikA
k
l(g
−1)lj =: (gAg−1)ij .

Hence, we have

(AdΩ−1(m))∗(ω
U1) = (Ω(m)−1)ik(ω

U1)m)kl(Ω(m))lj
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Altogether, we find that the transition rule for the Yang-Mills fields on the intersection of
U1 and U2 is given by

(ωU2)ijµ = (Ω−1)ik(ω
U1)klµΩl

j + (Ω−1)ik∂µ(Ω−1)kj .

As an application, consider the spacial case in which the sections σ1, σ2 are induced by
co-ordinate charts (U1, x) and (U2, y). Then we have

Ωi
j =

∂yi

∂xj
:= ∂j(y

i ◦ x−1) ◦ x

(Ω−1)ij =
∂xi

∂yj
:= ∂j(x

i ◦ y−1) ◦ y

and hence

(ωU2)ijν =
∂yµ

∂xν

(
∂xi

∂yk
(ωU1)klµ

∂yl

∂xj
+
∂xi

∂yk
∂2yk

∂xµ∂xj

)
.

You may recognise this as the transformation law for the Christoffel symbols from general
relativity.
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23 Parallel transport

We now come to the second term in the sequence “connection, parallel transport, covariant
derivative”. The idea of parallel transport on a principal bundle hinges on that of horizontal
lift of a curve on the base manifold, which is a lifting to a curve on the principal bundle in
the sense that the projection to the base manifold of this curve gives the curve we started
with. In particular, if the principal bundle is equipped with a connection, we would like to
impose some extra conditions on this lifting, so that it “connects” nearby fibres in a nice
way. We will then consider the same idea on an associated bundle and see how we can
induce a derivative operator if the associated bundle is a vector bundle.

23.1 Horizontal lifts to the principal bundle

Definition. Let (P, π,M) be a principal G-bundle equipped with a connection and let
γ : [0, 1]→M be a curve on M . The horizontal lift of γ through p0 ∈ P is the unique curve

γ↑ : [0, 1]→ P

with γ↑(0) = p0 ∈ preimπ({γ(0)}) satisfying

i) π ◦ γ↑ = γ;

ii) ∀λ ∈ [0, 1] : ver(Xγ↑,γ↑(λ)) = 0;

iii) ∀λ ∈ [0, 1] : π∗(Xγ↑,γ↑(λ)) = Xγ,γ(λ).

Intuitively, a horizontal lift of a curve γ on M is a curve γ↑ on P such that each point
γ↑(λ) ∈ P belongs to the fibre of γ(λ) (condition i), the tangent vectors to the curve γ↑

have no vertical component (condition ii), i.e. they lie entirely in the horizontal spaces at
each point, and finally the projection of the tangent vector to γ↑ at γ↑(λ) coincides with
the tangent vector to the curve γ at π(γ↑(λ)) = γ(λ).

Remark 23.1. Note that the uniqueness in the above definition only stems from the choice of
p0 ∈ preimπ({γ(0)}). A curve on M has several horizontal lifts to a curve on P , but there
is only one such curve going through each point p0 ∈ preimπ({γ(0)}). Clearly, different
horizontal lifts cannot intersect each other.

Our strategy to write down an explicit expression for the horizontal lift through p0 ∈ P
of a curve γ : [0, 1]→M is to proceed in two steps:

i) “Generate” the horizontal lift by starting from some arbitrary curve δ : [0, 1]→ P such
that π ◦ δ = γ by action of a suitable curve g : (0, 1)→ G so that

γ↑(λ) = δ(λ) C g(λ).

The suitable curve g will be the solution to an ordinary differential equation with
initial condition g(0) = g0, where g0 is the unique element in G such that

δ(0) C g0 = p0 ∈ P.
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ii) We will explicitly solve (locally) this differential equation for g : [0, 1]→ P by a path-
ordered integral over the local Yang-Mills field.

We have the following result characterising the curve g appearing above.

Theorem 23.2. The (first order) ODE satisfied by the curve g : [0, 1]→ G is

(Adg(λ)−1)∗(ωδ(λ)(Xδ,δ(λ))) + Ξg(λ)(Xg,g(λ)) = 0

with the initial condition g(0) = g0.

Corollary 23.3. If G is a matrix group, then the above ODE takes the form

g(λ)−1(ωδ(λ)(Xδ,δ(λ)))g(λ) + g(λ)−1ġ(λ) = 0

where we denoted matrix multiplication by juxtaposition and ġ(λ) denotes the derivative
with respect to λ of the matrix entries of g. Equivalently, by multiplying both sides on the
left by g(λ),

ġ(λ) = −(ωδ(λ)(Xδ,δ(λ)))g(λ).

In order to further massage this ODE, let us consider a chart (U, x) on the base manifold
M , such that the image of γ is entirely contained in U . A local section σ : U → P induces

i) a Yang-Mills field ωU ;

ii) a curve on P by δ := σ ◦ γ.

In fact, since the only condition imposed on δ is that π ◦ δ = γ, choosing a such a curve δ
is equivalent to choosing a local section σ. Note that we have

σ∗(Xγ,γ(λ)) = Xδ,δ(λ),

and hence

ωδ(λ)(Xδ,δ(λ)) = ωδ(λ)(σ∗(Xγ,γ(λ)))

= (σ∗ω)γ(λ)(Xγ,γ(λ))

= (ωU )γ(λ)(Xγ,γ(λ))

= ωUµ (γ(λ))(dxµ)γ(λ)

(
Xν
γ (γ(λ))

(
∂

∂xν

)
γ(λ)

)
= ωUµ (γ(λ))Xν

γ (γ(λ))(dxµ)γ(λ)

((
∂

∂xν

)
γ(λ)

)
= ωUµ (γ(λ))Xν

γ (γ(λ)) δµν

= ωUµ (γ(λ))Xµ
γ (γ(λ)).

Thus, in the special case of a matrix Lie group, the ODE reads

ġ(λ) = −Γµ(γ(λ)) γ̇µ(λ),

where Γµ := ωUµ and γ̇µ(λ) := Xµ
γ (γ(λ)), together with the initial condition g(0) = g0.
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23.2 Solution of the horizontal lift ODE by a path-ordered exponential

As a first step towards the solution of our ODE, consider

g(t) := g0 −
∫ t

0
dλΓµ(γ(λ)) γ̇µ(λ)g(λ).

This doesn’t seem to have brought us far since the function g that we would like to determine
appears again on the right hand side. However, we can now iterate this definition to obtain

g(t) = g0 −
∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)

(
g0 −

∫ λ1

0
dλ2 Γν(γ(λ2))γ̇ν(λ2)

)
= g0 −

∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)g0 +

∫ t

0
dλ1

∫ λ1

0
dλ2 Γµ(γ(λ1))γ̇µ(λ1)Γν(γ(λ2))γ̇ν(λ2)g(λ2).

Matters seem to only get worse, until one realises that the first integral no longer contains
the unknown function g. Hence, the above expression provides a “first-order” approximation
to g. It is clear that we can get higher-order approximations by iterating this process

g(t) = g0 −
∫ t

0
dλ1 Γµ(γ(λ1))γ̇µ(λ1)g0

+

∫ t

0
dλ1

∫ λ1

0
dλ2 Γµ(γ(λ1))γ̇µ(λ1)Γν(γ(λ2))γ̇ν(λ2)g0

...

+ (−1)n
∫ t

0
dλ1

∫ λ1

0
dλ2 · · ·

∫ λn−1

0
dλn Γµ(γ(λ1))γ̇µ(λ1) · · ·Γν(γ(λn))γ̇ν(λn) g(λn).

Note how the range of each integral depends on the integration variable of the previous
integral. It would much nicer if we could have the same range in each integral. In fact,
there is a standard trick to achieve this. The region of integration in the double integral is

0 t

t

λ1

λ2

and if the integrand f(λ1, λ2) is invariant under the exchange λ1 ↔ λ2, we have∫ t

0
dλ1

∫ λ1

0
dλ2 f(λ1, λ2) =

1

2

∫ t

0
dλ1

∫ t

0
dλ2 f(λ1, λ2).

Generalising to n dimensions, we have∫ t

0
dλ1 · · ·

∫ λn−1

0
dλn f(λ1, . . . , λn) =

1

n!

∫ t

0
dλ1 · · ·

∫ t

0
dλn f(λ1, . . . , λn)
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if f is invariant under any permutation of its arguments. Moreover, since each term in our
integrands only depends on one integration variable at a time, we can use∫ t

0
dλ1 · · ·

∫ t

0
dλn f1(λ1) · · · fn(λn) =

(∫ t

0
dλ1 f(λ1)

)
· · ·
(∫ t

0
dλn f(λn)

)
so that, in our case, we would have

g(t) =

( ∞∑
n=0

(−1)n

n!

(∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)n)
g0

= exp

(
−
∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)
g0.

However, our integrands are Lie-algebra-valued (that is, matrix valued), and since the
factors therein need not commute, they are not invariant under permutations of the inde-
pendent variables. Hence, the above formula doesn’t work. Instead, we write

g(t) = P exp

(
−
∫ t

0
dλΓµ(γ(λ))γ̇µ(λ)

)
g0,

where the path-ordered exponential P exp is defined to yield the correct expression for g(t).
Summarising, we have the following.

Proposition 23.4. For a principal G-bundle (P, π,M), where G is a matrix Lie group, the
horizontal lift of a curve γ : [0, 1] → U through pp ∈ preimπ({U}), where (U, x) is a chart
on M , is given in terms of a local section σ : U → P by the explicit expression

γ↑(λ) = (σ ◦ γ)(λ) C

(
P exp

(
−
∫ λ

0
dλ̃Γµ(γ(λ̃))γ̇µ(λ̃)

)
g0

)
.

Definition. Let γ↑p : [0, 1] → P be the horizontal lift through p ∈ preimπ({γ(0)}) of the
curve γ : [0, 1]→M . The parallel transport map along γ is the map

Tγ : preimπ({γ(0)})→ preimπ({γ(1)})
p 7→ γ↑p(1).

Remark 23.5. The parallel transport is, in fact, a bijection between the fibres preimπ({γ(0)})
and preimπ({γ(1)}). It is injective since there is a unique horizontal lift of γ through each
point p ∈ preimπ({γ(0)}), and horizontal lifts through different points do not intersect.
It is surjective since for each q ∈ preimπ({γ(1)}) we can find a p such that q = γ↑p(1) as
follows. Let p̃ ∈ preimπ({γ(0)}). Then γ↑p̃(1) belongs to the same fibre as q and hence there
exists a unique g ∈ G such that q = γ↑p̃(1) C g. Recall that

γ↑p̃(λ) = (σ ◦ γ)(λ) C (P exp(· · · )g0)

where g0 is the unique g0 ∈ G such that p̃ = (σ ◦ γ)(0) C g0. Define p ∈ preimπ({γ(0)}) by

p := p̃ C g = (σ ◦ γ)(0) C (g0 • g).
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Then we have

γ↑p(1) = (σ ◦ γ)(1) C (P exp(· · · )g0 • g)

= (σ ◦ γ)(1) C (P exp(· · · )g0) C g

= γ↑p̃(1) C g

= q.

Loops and holonomy groups

Consider the case of loops, i.e. curves γ : [0, 1] → M for which γ(0) = γ(1). Fix some
p ∈ preimπ({γ(0)}). The condition that π ◦ γ↑p = γ then implies that γ↑p(0) and γ↑p(1)

belong to the same fibre. Hence, there exists a unique gγ ∈ G such that

γ↑p(1) = γ↑p(0) C gγ = p C gγ .

Definition. Let ω be a connection one-form on the principal G-bundle (P, π,M). Let
γ : [0, 1]→M be a loop with base-point a ∈M , i.e. γ(0) = γ(1) = a. The subgroup of G

Hola(ω) := {gγ | γ↑p(1) = p C gγ for some loop γ}

is called the holonomy group of ω on P at the base-point a.

23.3 Horizontal lifts to the associated bundle

Almost everything that we have done so far transfers with ease to an associated bundle via
the following definition.

Definition. Let (P, π,M) be a principal G-bundle and ω a connection one-form on P . Let
(PF , πF ,M) be an associated fibre bundle of P on whose typical fibre F the Lie group G
acts on the left by B. Let γ : [0, 1] → M be a curve on M and let γ↑p be its horizontal lift
to P through p ∈ preimπ({γ(0)}). Then the horizontal lift of γ to the associated bundle
PF through the point [p, f ] ∈ PF is the curve

γ

PF
↑
[p,f ] : [0, 1]→ PF

λ 7→ [γ↑p(λ), f ]

For instance, we have the obvious parallel transport map.

Definition. The parallel transport map on the associated bundle is given by

TPFγ : preimπF ({γ(0)})→ preimπF ({γ(1)})

[p, f ] 7→ γ

PF
↑
[p,f ](1).

Remark 23.6. If F is a vector space and B : G×F → F is fibre-wise linear, i.e. for each fixed
g ∈ G, the map (g B −) : F → F is linear, then (PF , πF ,M) is called a vector bundle. The
basic idea of a covariant derivative is as follows. Let σ : U → PF be a local section of the
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associated bundle. We would like to define the derivative of σ at the point m ∈ U ⊆M in
the direction X ∈ TmM . By definition, there exists a curve γ : (−ε, ε)→M with γ(0) = m

such that X = Xγ,m. Then for any 0 ≤ t < ε, the points γ
PF
↑
[σ(m),f ](t) and σ(γ(t)) lie in

the same fibre of PF . But since the fibres are vector spaces, we can write the differential
quotient

σ(γ(t))− γ
PF
↑
[σ(m),f ](t)

t
,

where the minus sign denotes the additive inverse in the vector space preimπF ({γ(t)}) and
hence define the derivative of σ at the point m in the direction X, or the derivative of σ
along γ at γ(0) = m, by

lim
t→0

σ(γ(t))− γ
PF
↑
[σ(m),f ](t)

t

(of course, this makes sense as soon as we have a topology on the fibres). We will soon
present a more abstract approach.
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24 Curvature and torsion on principal bundles

Usually, in more elementary treatments of differential geometry or general relativity, cur-
vature and torsion are mentioned together as properties of a covariant derivative over the
tangent or the frame bundle. Since we will soon define the notion of curvature on a general
principal bundle equipped with a connection, one might expect that there be a general
definition of torsion on a principal bundle with a connection. However, this is not the case.
Torsion requires additional structure beyond that induced by a connection. The reason why
curvature and torsion are sometimes presented together is that frame bundles are already
equipped, in a canonical way, with the extra structure required to define torsion.

24.1 Covariant exterior derivative and curvature

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. Let φ be
a k-form (i.e. an anti-symmetric, C∞(P )-multilinear map) with values in some module V .
Then then exterior covariant derivative of φ is

Dφ : Γ(TP )×(k+1) → V

(X1, . . . , Xk+1) 7→ dφ(hor(X1), . . . ,hor(Xk+1)).

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω. The cur-
vature of the connection one-form ω is the Lie-algebra-valued 2-form on P

Ω: Γ(TP )× Γ(TP )→ TeG

defined by
Ω := Dω.

For calculational purposes, we would like to make this definition a bit more explicit.

Proposition 24.1. Let ω be a connection one-form and Ω its curvature. Then

Ω = dω + ω ω (?)

with the second term on the right hand side defined as

(ω ω)(X,Y ) := Jω(X), ω(Y )K

where X,Y ∈ Γ(TP ) and the double bracket denotes the Lie bracket on TeG.

Remark 24.2. If G is a matrix Lie group, and hence TeG is an algebra of matrices of the
same size as those of G, then we can write

Ωi
j = dωij + ωik ∧ ωkj .

Proof. Since Ω is C∞-bilinear, it suffices to consider the following three cases.
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a) Suppose that X,Y ∈ Γ(TP ) are both vertical, that is, there exist A,B ∈ TeG such
that X = XA and Y = XB. Then the left hand side of our equation reads

Ω(XA, XB) := Dω(XA, XB)

= dω(hor(XA), hor(XB))

= dω(0, 0)

= 0

while the right hand side is

dω(XA, XB) + (ω ω)(XA, XB) = XA(ω(XB))−XB(ω(XA))

− ω([XA, XB]) +
q
ω(XA), ω(XB)

y

= XA(B)−XB(A)

− ω(XJA,BK) + JA,BK

= − JA,BK + JA,BK

= 0.

Note that we have used the fact that the map

i : TeG→ Γ(TP )

A 7→XA

is a Lie algebra homomorphism, and hence

XJA,BK = i(JA,BK) = [i(A), i(B)] = [XA, XB],

where the single square brackets denote the Lie bracket on Γ(TP ).

b) Suppose that X,Y ∈ Γ(TP ) are both horizontal. Then we have

Ω(X,Y ) := Dω(X,Y ) = dω(hor(X), hor(Y )) = dω(X,Y )

and
(ω ω)(X,Y ) = Jω(X), ω(Y )K = J0, 0K = 0.

Hence the equation holds in this case.

c) W.l.o.g suppose that X ∈ Γ(TP ) is horizontal while Y = XA ∈ Γ(TP ) is vertical.
Then the left hand side is

Ω(X,XA) := Dω(X,XA) = dω(hor(X), hor(XA)) = dω(hor(X), 0) = 0.

while the right hand side gives

dω(X,XA) + (ω ω)(X,XA) = X(ω(XA))−XA(ω(X))

− ω([X,XA]) +
q
ω(X), ω(XA)

y

= X(A)−XA(0)

− ω(XJA,BK) + J0, AK

= −ω([X,XA])

= 0,
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where the only non-trivial step, which is left as an exercise, is to show that if X is
horizontal and Y is vertical, then [X,Y ] is again horizontal.

We would now like to relate the curvature on a principal bundle to (local) objects
on the base manifold, just like we have done for the connection one-form. Recall that a
connection one-form on a principal G-bundle (P, π,M) is a TeG-valued one-form ω on P .
By using the notation Ω1(P ) ⊗ TeG for the collection (in fact, bundle) of all TeG-valued
one-forms, we have ω ∈ Ω1(P )⊗TeG. If σ ∈ Γ(TU) is a local section on M , we defined the
Yang-Mills field ωU ∈ Ω1(U)⊗ TeG by pulling ω back along σ.

Definition. Let (P, π,M) be a principal G-bundle and let Ω be the curvature associated to
a connection one-form on P . Let σ ∈ Γ(TU) be a local section on M . Then, the two-form

Riem ≡ F := σ∗Ω ∈ Ω2(U)⊗ TeG

is called the Yang-Mills field strength.

Remark 24.3. Observe that the equation Ω = dω + ω ω on P immediately gives

σ∗Ω = σ∗(dω + ω ω)

= σ∗(dω) + σ∗(ω ω)

= d(σ∗ω) + σ∗ω σ∗ω.

Since Riem is a two-form, we can write

Riemµν = (dωU )µν + ωUµ ωUν .

In the case of a matrix Lie group, by writing Γijµ := (ωU )ijµ, we can further express this
in components as

Riemi
jµν = ∂νΓijµ − ∂µΓijν + ΓikµΓkjν − ΓikνΓkjµ

from which we immediately observe that Riem is symmetric in the last two indices, i.e.

Riemi
j[µν] = 0.

Theorem 24.4 (First Bianchi identity). Let Ω be the curvature two-form associated to a
connection one-form ω on a principal bundle. Then

DΩ = 0.

Remark 24.5. Note that since Ω = Dω, Bianchi’s identity can be rewritten as D2Ω = 0.
However, unlike the exterior derivative d, the covariant exterior derivative does not satisfy
D2 = 0 in general.

– 199 –



24.2 Torsion

Definition. Let (P, π,M) be a principal G-bundle and let V be the representation space
of a linear (dimM)-dimensional representation of the Lie group G. A solder(ing) form on
P is a one-form θ ∈ Ω1(P )⊗ V such that

(i) ∀X ∈ Γ(TP ) : θ(ver(X)) = 0;

(ii) ∀ g ∈ G : g B ((C g)∗θ) = θ;

(iii) TM and PV are isomorphic as associated bundles.

A solder form provides an identification of V with each tangent space of M .

Example 24.6. Consider the frame bundle (LM,π,M) and define

θ : Γ(T (LM))→ RdimM

X 7→ (u−1
π(X) ◦ π∗)(X)

where for each e := (e1, . . . , edimM ) ∈ LM , ue is defined as

ue : RdimM ∼−→ Tπ(e)M

(x1, . . . , xdimM ) 7→ xiei.

To describe the inverse map u−1
e explicitly, note that to every frame (e1, . . . , edimM ) ∈ LM ,

there exists a co-frame (f1, . . . , fdimM ) ∈ L∗M such that

u−1
e : Tπ(e)M

∼−→ RdimM

Z 7→ (f1(Z), . . . , fdimM (Z)).

Definition. Let (P, π,M) be a principal G-bundle with connection one-form ω and let
θ ∈ Ω1(P )⊗ V be a solder form on P . Then

Θ := Dθ ∈ Ω2(P )⊗ V

is the torsion of ω with respect to θ.

Remark 24.7. You can now see that the “extra structure” required to define the torsion is
a choice of solder form. The previous example shows that there a canonical choice of such
a form on any frame bundle bundle.

We would like to have a similar formula for Θ as we had for Ω. However, since Θ and
θ are both V -valued but ω is TeG-valued, the term ω θ would be meaningless. What we
have, instead, is the following

Θ = dθ + ω θ,

where the half-double wedge symbol intuitively indicates that we let ω act on θ. More
precisely, in the case of a matrix Lie group, recalling that dimG = dimTeG = dimV , we
have

Θi = dθi + ωik θk.
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Theorem 24.8 (Second Bianchi identity). Let Θ be the torsion of a connection one-form
ω with respect to a solder form θ on a principal bundle. Then

DΘ = Ω θ.

Remark 24.9. Like connection one-forms and curvatures two-forms, a torsion two-form Θ

can also be pulled back to the base manifold along a local section σ as T := σ∗Θ. In fact,
this is the torsion that one typically meets in general relativity.
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25 Covariant derivatives

Recall that if F is a vector space and (P, π,M) a principal G-bundle equipped with a
connection, we can use the parallel transport on the associated bundle (PF , πF ,M) and the
vector space structure of F to define the differential quotient of a local section σ : U → PF
along an integral curve of some tangent vector X ∈ TU . This then allowed us to define the
covariant derivative of σ at the point π(X) ∈ U in the direction of X ∈ TU .

This approach to the concept of covariant derivative is very intuitive and geometric,
but it is a disaster from a technical point of view as it is quite difficult to implement. There
is, in fact, a neater approach to covariant differentiation, which will now discuss.

25.1 Equivalence of local sections and equivariant functions

Theorem 25.1. Let (P, π,M) be a principal G-bundle and (PF , πF ,M) be an associated
bundle. Let (U, x) be a chart on M . The local sections σ : U → PF are in bijective corre-
spondence with G-equivariant functions φ : preimπ(U) ⊆ P → F , where the G-equivariance
condition is

∀ g ∈ G : ∀ p ∈ preimπ(U) : φ(g C p) = g−1 B φ(p).

Proof. (a) Let φ preimπ(U)→ F be G-equivariant. Define

σφ : U → PF

m 7→ [p, φ(p)]

where p is any point in preimπ({m}). First, we should check that σφ is well-defined.
Let p, p̃ ∈ preimπ({m}). Then, there exists a unique g ∈ G such that p̃ = p C g.
Then, by the G-equivariance of φ, we have

[p̃, φ(p̃)] = [p C g, φ(p C g)] = [p C g, g−1 B φ(p)] = [p, φ(p)]

and hence, σφ is well-defined. Moreover, since for all g ∈ G

πF ([p, φ(p)]) = π(p) = π(p C g) = πF ([p C g, g−1 B φ(p)]),

we have πF ◦ σφ = idU and thus, σφ is a local section.

(b) Let σ : U → PF be a local section. Define

φσ : preimπ(U)→ F

p 7→ i−1
p (σ(π(p)))

where i−1
p is the inverse of the map

ip : F → preimπF ({π(p)}) ⊆ PF
f 7→ [p, f ].

Observe that, for all g ∈ G, we have

ip(f) := [p, f ] = [p C g, g−1 B f ] =: ipCg(g
−1 B f).
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Let us now show that φσ is G-equivariant. We have

φσ(p C g) = i−1
pCg(σ(π(p C g)))

= i−1
pCg(σ(π(p)))

= i−1
pCg(ip(φσ(p)))

= i−1
pCg(ipCg(g

−1 B φσ(p)))

= g−1 B φσ(p),

which is what we wanted.

(c) We now show that these constructions are the inverses of each other, i.e.

σφσ = σ, φσφ = φ.

Let m ∈ U . Then, we have

σφσ(m) = [p, φσ(p)]

= [p, i−1
p (σ(π(p)))]

= ip(i
−1
p (σ(π(p))))

= σ(π(p))

= σ(m)

and hence σφσ = σ. Now let p ∈ preimπ(U). Then, we have

φσφ(p) = i−1
p (σφ(π(p)))

= i−1
p ([p, φ(p)])

= i−1
p (ip(φ(p)))

= φ(p)

and hence, φσφ = φ.

25.2 Linear actions on associated vector fibre bundles

We now specialise to the case where F is a vector space, and hence we can require the left
action GB : F

∼−→ F to be linear.

Proposition 25.2. Let (P, π,M) be a principal G-bundle, and let (PF , πF ,M) be an asso-
ciated bundle, where G is a matrix Lie group, F is a vector space, and the left G-action on
F is linear. Let φ : P → F be G-equivariant. Then

φ(p C exp(At)) = exp(−At) B φ(p),

where p ∈ P and A ∈ TeG.

Corollary 25.3. With the same assumptions as above, let A ∈ TeG and let ω be a connec-
tion one-form on (P, π,M). Then

dφ(XA) + ω(XA) B φ = 0.
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Proof. Since φ is G-equivariant, by applying the previous proposition, we have

φ(p C exp(At)) = exp(−At) B φ(p)

for any p ∈ P . Hence, differentiating with respect to t yields

(φ(p C exp(At)))′(0) = (exp(−At) B φ(p))′(0)

dpφ(XA) = −A B φ(p)

dpφ(XA) = −ω(XA) B φ(p)

for all p ∈ P and hence, the claim holds.

25.3 Construction of the covariant derivative

We now wish to construct a covariant derivative, i.e. an “operator” ∇ such that for any
local section σ : U ⊆M → PF and any X ∈ TmU with m ∈ U , we have that ∇Xσ is again
a local section U → PF and

i) ∇fX+Y σ = f∇Xσ +∇Y σ

ii) ∇X(σ + τ) = ∇Xσ +∇Xτ

iii) ∇Xfσ = X(f)σ + f∇Xσ

for any sections σ, τ : U → PF , any f ∈ C∞(U), and any X,Y ∈ TmU .
These (together with ∇Xf := X(f)) are usually presented as the defining properties

of the covariant derivative in more elementary treatments.
Recall that functions are a special case of forms, namely the 0-forms, and hence the

exterior covariant derivative a function φ : P → F is

Dφ := dφ ◦ hor .

We now have the following result.

Proposition 25.4. Let φ : P → F be G-equivariant and let X ∈ TpP . Then

Dφ(X) = dφ(X) + ω(X) B φ

Proof. (a) Suppose that X is vertical, that is, X = XA for some A ∈ TeG. Then,

Dφ(X) = dφ(hor(X)) = 0

and
dφ(XA) + ω(XA) B φ = 0

by the previous corollary.

(b) Suppose that X is horizontal. Then,

Dφ(X) = dφ(X)

and ω(X) = 0, so that we have

Dφ(X) = dφ(X) + ω(X) B φ.
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Hence, it is clear from this proposition that Dφ(X), which we can also write as DXφ, is
C∞(P )-linear in the X-slot, additive in the φ-slot and satisfies property iii) above. However,
it also clearly not a covariant derivative since X ∈ TP rather than X ∈ TM and φ is a
G-equivariant function P → F rather than a local section o (PF , πF ,M).

We can obtain a covariant derivative from D by introducing a local trivialisation on
the bundle (P, π,M). Indeed, let s : U ⊆ M → P be a local section. Then, we can pull
back the following objects

φ : P → F  s∗φ := φ ◦ s : U → PF

ω ∈ Ω1(M)⊗ TeG  ωU := s∗ω ∈ Ω1(U)⊗ TeG
Dφ ∈ Ω1(M)⊗ F  s∗(Dφ) ∈ Ω1(U)⊗ F.

It is, in fact, for this last object that we will be able to define the covariant derivative.
Let X ∈ TU . Then

(s∗Dφ)(X) = s∗(dφ+ ω B φ)(X)

= s∗(dφ)(X) + s∗(ω B φ)(X)

= d(s∗φ)(X) + s∗(ω)(X) B s∗φ

= dσ(X) + ωU (X) B σ

where we renamed s∗φ =: σ. In summary, we can write

∇Xσ = dσ(X) + ωU (X) B σ

One can check that this satisfies all the properties that we wanted a covariant derivative to
satisfy. Of course, we should note that this is a local definition.

Remark 25.5. Observe that the definition of covariant derivative depends on two choices
which can be made quite independently of each other, namely, the choice of connection
one-form ω (which determines ωU ) and the choice of linear left action B on F .
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Further readings

There are several books covering some, most, all, or much more of the course material.

• Baez, Muniain, Gauge Fields, Knots and Gravity, World Scientific 1994

• Choquet-Bruhat, DeWitt-Morette, Analysis, manifolds, and physics, Part I: Basics
(Revised edition), North-Holland 1982

• Choquet-Bruhat, DeWitt-Morette, Analysis, manifolds, and physics, Part II (Revised
and enlarged edition), North-Holland 2000

• Fecko, Differential geometry and Lie groups for physicists, Cambridge University Press
2006

• Frankel, The Geometry of Physics: An Introduction (Third edition), Cambridge Uni-
versity Press 2011

• Hamilton, Mathematical Gauge Theory: With Applications to the Standard Model of
Particle Physics, Springer 2018

• Hassani, Mathematical Physics: A Modern Introduction to Its Foundations (Second
edition), Springer 2013

• Lam, Topics in Contemporary Mathematical Physics (Second edition), World Scientific
2015

• Marathe, Martucci, The Mathematical Foundations of Gauge Theories, North-Holland
1992

• Naber, Topology, Geometry and Gauge Fields: Foundations (Second edition), Springer
2010

• Nakahara, Geometry, Topology and Physics (Second edition), Institute of Physics
Publishing 2003

• Rudolph, Schmidt, Differential Geometry and Mathematical Physics: Part I. Mani-
folds, Lie Groups and Hamiltonian Systems, Springer 2012

• Rudolph, Schmidt, Differential Geometry and Mathematical Physics: Part II. Fibre
Bundles, Topology and Gauge Fields, Springer 2017

• Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press
1980

• Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Space and Dif-
ferential Geometry, Cambridge University Press 2004

• Westenholz, Differential Forms in Mathematical Physics (Revised edition), North
Holland 1978

Topic-specific references follow.
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Logic

• Chiswell, Wilfrid, Mathematical Logic, Oxford University Press 2007

• Hammack, Book of Proof, Virginia Commonwealth University
http://www.people.vcu.edu/~rhammack/BookOfProof/

• Mendelson, Introduction to Mathematical Logic, CRC Press 2015

Set theory

• Adamson, A Set Theory Workbook, Birkhäuser 1997

• Smullyan, Fitting, Set theory and the continuum problem, Oxford University Press
1996

• Takeuti, Zaring, Introduction to Axiomatic Set Theory, Springer 1981

Topology

• Adamson, A General Topology Workbook, Birkhäuser 1995

• Kalajdzievski, An Illustrated Introduction to Topology and Homotopy, CRC Press 2015

• Munkres, Topology (Second edition), Pearson 2014

Topological manifolds

• Lee, Introduction to Topological Manifolds (Second edition), Springer 2011

Linear algebra

• Jänich, Linear algebra, Springer 1994

• Lang, Linear Algebra (Third edition), Springer 1987

• Shakarchi, Solutions Manual for Lang’s Linear Algebra, Springer 1996

Differentiable manifolds

• Gadea, Masqué, Mykytyuk, Analysis and Algebra on Differentiable Manifolds: A
Workbook for Students and Teachers (Second Edition), Springer 2013

• Jänich, Vector Analysis, Springer 2001

• Lang, Fundamentals of Differential Geometry, Springer 1999

• Lee, Introduction to Smooth Manifolds (Second edition), Springer 2012

• Lee, Manifolds and Differential Geometry, American Mathematical Society 2009

• Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer 1983
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Lie groups and Lie algebras

• Das, Okubo, Lie Groups and Lie Algebras for Physicists, World Scientific 2014

• Erdmann, Wildon, Introduction to Lie Algebras, Springer 2006

• Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
(Second edition), Springer 2015

• Kirillov, An Introduction to Lie Groups and Lie Algebras, Cambridge University Press
2008

• Stillwell, Naive Lie Theory, Springer 2008

Representation theory

• Fuchs, Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course
for Physicists, Cambridge University Press 1997

• Fulton, Harris, Representation Theory: A First Course, Springer 2004

• Zee, Group Theory in a Nutshell for Physicists, Princeton University Press 2016

Principal bundles

• Sontz, Principal Bundles: The Classical Case, Springer 2015

• Sontz, Principal Bundles: The Quantum Case, Springer 2015
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