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Abstract: In this paper, the direct method is utilized for solving second order two-point boundary value problem
of Neumann type. The method will obtain the solution of the second order boundary value problem directly
without reducing it to to first order equations. The method will be implemented using variable step size via
shooting technique adapted with the Newton method. Numerical results are given to compare the efficiency
of the proposed method with the bvp4c from the Matlab solver.
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INTRODUCTION to solve second order boundary value problem and Yao

Two-point boundary value problems have been boundary value problems. Recently, Aly et al. [10] solved
widely arisen in modeling of chemical reactions, the the two-point nonlinear boundary value problems with
boundary layer theory in fluid mechanic and heat power Neumann boundary conditions by using Adomian
transmission theory. These problems can be presented in decomposition method. Besides that, Kierzenka and
several types of boundary conditions: e.g. Dirichlet, Shampine [11] introduced a boundary value problem
Neumann and mixed. Dirichlet boundary condition is the solver based on residual control and the MATLAB which
common boundary condition and has been solved by call bvp4c.
several researchers such as Hamid et al. [1] and Mohamad The purpose of this paper is to establish a new
[2]. Liu [3] studied on Neumann-type boundary value algorithm for solving the linear and nonlinear second
problems and Han and Wang [4] proved the existence of order two-point boundary value problem subjected to
solutions to mixed two point boundary-value problem for Neumann boundary condition directly. The approach for
impulsive differential equations by variational methods. solving higher order ordinary differential equation directly
Robin boundary condition is another type of boundary has been suggested by Suleiman [12] and; Majid and
condition; it is a linear combination of Dirichlet and Suleiman [13]. We will extend the direct method using
Neumann boundary conditions. variable step size from Majid and Suleiman [13] and

We are concerned for solving the Neumann type adapted with shooting technique via Newton method to
boundary value problem. There are many analytical and solve the boundary value problem.
numerical techniques available to solve boundary value
problem  with  Neumann  condition  including  several MATERIALS AND METHODS
well-known methods, such as Adomian decomposition
method, finite difference method and collocation method. Consider the second order two-point boundary value
Dehghan  [5]  approached  the  numerical solution of a problem of the form:
non-local boundary value problem with Neumann’s
boundary conditions by using finite difference method. (1)
Ramadan  [6]  and  Liu et al.  [7]  solved  the Neumann
type boundary value problems by polynomial and Subject to the Neumann boundary conditions: 
nonpolynomial spline approach. Siraj-ul-Islam et al. [8]
proposed the collocation method with the Haar wavelets (2)

[9] applied iterative method of nonlinear Neumann
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Fig. 1: Direct method variable step size

In Fig. 1 show that the approximated value y  hasn+1

the current step size, h and the previous step size were rh,
qh and ph. The corrector formulae will involve the set of
points {x , x , x , x , xn }, while the predictorn–3 n–2 n–1 n +1

formulae will involve the set of points {x , x , x , x ,}.n–3 n–2 n–1 n

The corrector formulae of direct method were derived
using Lagrange interpolation polynomial of order five and
the predictor formulae were derived using the Lagrange
interpolation polynomial of order four. We obtained the
approximation values of y  at the points x  byn+1 n+1

integrating once and twice over Eq. (1) with respect to x
over the interval [x , x .n n+1

(3)

Let x  = x + h, the Eq. (3) gives:n+1

(4)

The function f(x,y,y’) in (4) will be approximated using
Lagrange interpolating polynomial, the value of y  cann+1

be obtained by using MAPLE and the corrector formulae
can be obtained as follows:

(5)

The direct method will solve boundary value problem
of Neumann type adapted with shooting technique via
Newton method.

Implementation of the Method
Shooting Technique: The shooting technique used to
form the boundary value problem of Neumann boundary
condition to initial value problems. The idea in shooting
technique is to obtain the missing initial value until the
boundary condition at the other end converges to its
correct value. In order to correcting the guessing value,
Newton method is adapted. Eq. (1) and (2) can be written
by using shooting technique:

(6)

We choose s  = (  – ) /(b – a) which is referring to0

Faires and Burden [14].
The stop condition for shooting technique is given

as follow: 

(7)

We compute the {s  by Newton method:v}

(8)

Differentiate (6) with respect to s and it is simplify as
follows:

(9)
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Therefore, the solutions of (8) will gives ’(s ) = The successful step is dependent on the conditionv

iz.(b,s ). The new guess can be calculated base on the local truncation error (LTE) < TOL. If this condition fails,v

previous guess using: the values of the approximate solution, y  are rejected

(10) approximate solution.

Both of equations (6) and (9) will be solved Algorithm of Direct Method Variable Step Size (DMVS)
simultaneously using the direct method. The process is via Shooting Technique Adapted with Newton Method:
repeated over and over until the error |  – y’ (b,s )| TOL.v

Variable Step Size Strategy: In order to reduce the Step 2 : Set x = x + h, evaluate y  and z  with direct
computation time, the variable step size strategy will be method and compute f  and z .
implemented and this strategy is referring to Shampine Step 3 : If x < b, repeat Step 2. If x = b, go to Step 4.
and Gordon [15]. Three basic strategies are proposed for Step 4 : If fulfill stop condition: |  – y’(b,s )| Tol, go to
the step size adjustment, where the next step size will be Step 6. If not, go to Step 5.
restricted to half, double or the same as the current step Step 5 : Generate the new guessing values by Eq. (9)
size. The successful step size will remain constant for at and go to Step 2.
least two blocks before we considered the next step size Step 6 : Complete.
to be doubled. When a fail step occurs, the next step size
will be halved of the previous step size. The following are This algorithm was developed in C language.
some of the cases for choosing step size: 

RESULTS AND DISCUSSION
Case 1: First time successful step: (p = q = r = 1).
Substitute p = q = r = 1 in (5) will produce the following In this section, four numerical examples are
corrector formulae: presented. These problems will be tested by the direct

method with three different, Tol: 10  and 10 . The

Case 2: Second time successful step: (p = q = r = 1/2).
Substitute p = q = r = 1/2 in (5) will produce the following h Step size
corrector formulae:

Case 3: First time failure step: (p = q = r = 2). Substitute p
= q = r = 2 in (5) will produce the following corrector
formulae:

n+1

and the current step size is reduce and recalculate the

Step 1 : Set Tol s0

n+1 n+1

n+1 n+1
n

v

3 5

numerical results will be comparing to the MATLAB
solver, bvp4c for two different step sizes, h: 0.1 and 0.05.
The MATLAB solver, bvp4c solves two point boundary
value problems by collocation method. The following
notations are used in the tables:

Tol Tolerance
MAXE Maximum error
AVE Average error
TFC Total function call
TS Total step at last iteration
IG Total iteration of guess
FS Failure step at last iteration
bvp4c MATLAB solver
DMVS Direct method variable step size adapted with

shooting technique via Newton method.

Problem 1: 
Linear boundary value problem:

Neumann boundary condition: 



1 cos(1)cos( ) sin( ) 1.
sin(1)

y x x−
= + −

2 3(3 )sin( ) 4 cos( ), 0 1.y xy x x x x x x x′′ = − + − − + + ≤ ≤

(0) 1, (1) 2sin(1).y y′ ′= − =

2sin ( ).y x=

2 2 42 cos(2 ) sin ( ), 0 1.y y x x x′′ = + − ≤ ≤

(0) 0, (1) 0.y y′ ′= =

1 cos(1)cos( ) sin( ) 1.
sin(1)

y x x−
= + −

exp( 2 ), 0 1.y y x′′ = − − ≤ ≤

1(0) 1, (1) .
2

y y′ ′= =

ln(1 ).y x= +
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Exact Solution: 

Problem 2: 
Linear boundary value problem:

Neumann boundary condition: 

Exact Solution: 

Problem 3: 
Non-linear boundary value problem: 

Neumann boundary condition: 

Exact Solution: 

Problem 4: 
Non-linear boundary value problem: 

Neumann boundary condition: 

Exact Solution:

The numerical results of the bvp4c and DMVS to
solve Problem 1-4 are presented in Tables 1-4
respectively. Firstly, we are interested to discuss the
numerical results obtained by bvp4c with two different
step size and DMVS at Tol = 10 . The maximum error and3

average error for DMVS is comparable with bvp4c in most
of the cases. For example in Table 1, the maximum error for and bvp4c at h=0.05 are 1.46E-06, 4.75E-04 and 2.51E-07,

Table 1: Comparison bvp4c with DMVS for Problem 1
bvp4c DMVS
---------------------- --------------------------------------------
h=0.1 h=0.05 Tol=e-3 Tol=e-5 Tol=e-7

MAXE 6.4e-6 6.2e-6 2.5e-6 8.7E-8 2.6e-9
AVE 6.6e-6 6.3e-6 2.4e-6 8.3E-8 2.4e-9
TFC 117 227 63 79 102
TS - - 26 34 42
IG - - 2 3 3
FS - - 0 0 0

Table 2: Comparison bvp4c with DMVS for Problem 2
bvp4c DMVS
---------------------- --------------------------------------------
h=0.1 h=0.05 Tol=e-3 Tol=e-5 Tol=e-7

MAXE 1.7e-5 1.5e-5 3.2e-4 2.3e-5 3.8e-7
AVE 1.4e-5 1.3e-5 2.9e-4 2.1e-5 3.3e-7
TFC 110 210 64 84 125
TS - - 26 34 50
IG - - 2 2 2
FS - - 0 0 0

Table 3: Comparison bvp4c with DMVS for Problem 3
bvp4c DMVS
---------------------- --------------------------------------------
h=0.1 h=0.05 Tol=e-3 Tol=e-5 Tol=e-7

MAXE 1.0e+0 4.8e-4 8.6e-4 7.0e-5 1.5e-6
AVE 9.9e-1 4.4e-4 1.1e-4 9.8e-6 2.9e-7
TFC 220061 74129 90 124 210
TS - - 36 49 83
IG - - 1 1 1
FS - - 0 0 0

Table 4: Comparison bvp4c with DMVS for Problem 4
bvp4c DMVS
---------------------- --------------------------------------------
h=0.1 h=0.05 Tol=e-3 Tol=e-5 Tol=e-7

MAXE 2.5e-5 1.5e-5 3.9e-5 4.7e-6 2.5e-7
AVE 2.5e-5 1.5e-5 3.6e-5 4.4e-6 2.3e-7
TFC 202 382 65 85 123
TS - - 27 36 52
IG - - 6 6 7
FS - - 0 0 0

DMVS at Tol = 10  and bvp4c at h=0.1 and h=0.05 are3

2.54E-06, 6.37E-06 and 6.16E-06 respectively. As the
tolerance getting smaller, the maximum error and average
error for DMVS is better compare to bvp4c when Tol =
10  and 10 . For example in Table 2 the average error for5 7

DMVS at Tol = 10  and bvp4c at h=0.05 are 3.26E-07 and7

1.34E-05 respectively.
For the non-linear boundary value problem, both

methods managed to give the similar conclusion, e.g. in
Table 3 and 4, the maximum error for DMVS at Tol = 10 7
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1.50E-05 respectively. We observed that the total function 5. Dehghan, M., 2003. Numerical solution of a non-local
call for DMVS is less than bvp4c in all cases, this is boundary value problem with Neumann’s boundary
expected because the DMVS solving boundary value conditions. Commun. Numer. Meth. Engng, 19: 1-12.
problem directly with variable step size but bvp4c reduce 6. Ramadan, M.A., I.F. Lashien and W.K. Zahra, 2007.
the boundary value problem to the first order system Polynomial and nonpolynomial spline approaches to
equations and solve it using constant step size. For the numerical solution of second order boundary
example in Table 3, the function call for DMVS is only 210 value problems. Applied Mathematics and
but bvp4c need 74129 function calls. As the tolerance Computation, 184: 476-484.
getting smaller DMVS obtain better accuracy. 7. Liu, B.L., H.W. Liu and Y. Chen, 2011. Polynomial

CONCLUSION value problems with Neumann conditions. Applied

The main advantage of this paper is to apply the 8. Siraj-ul-Islam, Aziz, I. and B. Sarler, 2010. The
direct way of dealing with the second order boundary numerical solution of second-order boundary-value
value problem. We have shown the proposed direct problems by collocation method with the Haar
method with shooting technique using variable step size wavelets.  Mathematical  and  Computer  Modelling,
is suitable for solving second order linear and non-linear 52: 1577-1590.
two-point boundary value problems with Neumann type. 9. Yao, Q., 2010. Successively iterative method of
The numerical result shown that in term of accuracy, our nonlinear Neumann boundary value problems.
proposed method can generate better accuracy even with Applied     Mathematics          and       Computation,
less function calls. 217: 2301-2306.
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